Weill Cornell Medical Research Building 413 E. 69th Street New York, NY

Jonathan Coan

Structural Option

Advisor: Dr. Boothby

Final Thesis Report

Submitted: 4/10/12

Weill Cornell Medical Research

413 East 69th Street New York, NY

Occupant: Weill Cornell Medical College Type: Laboratory/Research Facility Size: 455,000 ft² Number of Stories: Below Grade – 3 Above Grade – 18 + Penthouse Cost: \$650 Million Dates of Construction: 2010-2014 Delivery Method: Design-Bid-Build

Project Team

Architect:	Ennead Architects
Structural	Severud Associates
Engineer:	
Mechanical	Jaros Baum & Bolles
Engineer:	
Laboratory	Jacobs Consultancy/GPR
Consultant:	
Construction	Tishman Construction
Manager:	
14	

Architecture:

- Undulating glass sunshade curtain wall
- 13 floors of laboratory space
- 2 floor underground animal facility
- 2nd floor terrace connects to neighboring Lasdon House
- Doubles Weill Cornell Medical College's existing research space
- LEED Silver Rating upon completion

Structure:

- Foundation: Spread footing with rock anchors to resist water table uplift
- Floor System: Two way flat plate concrete slabs
- Lateral System: Reinforced Concrete Shear walls
- Concrete columns in various sizes with typical bays of 21'-0" (East-West) x 27'-7," 25'-0," and 16'-3" (North-South)
- Concrete beams in various sizes located as needed

MEP Systems:

- (13) Variable and control volume air handling units totaling 675,000 cfm; (4) Cooling towers on the roof totaling 1,228,000 cfm
- 265/460V electrical service brought to the building via four 4000A switchboards
- Fluorescent lighting throughout the building mostly at 277V

Jonathan Coan http://www.engr.psu.edu/ae/thesis/portfolios/2012/JRC5201/index.html

Structural Option

Final Report Advisor: Dr. Boothby Jonathan Coan **Table of Contents**

Executive Summary	4
Acknowledgements	5
Introduction	6
Structural Systems	7
Foundation System	7
Floor System	8
Lateral System	9
Beams and Columns	10
Design Codes and Standards	11
Proposal Objectives	11
Problem Statement	11
Problem Solution	
Breadth Topic: Building Enclosure	
MAE Course Related Study	13
Structural Depth	
Banded Beam	14
Two-Way PT Flat Plate Slab	15
Results and Comparison	20
Column Investigations	21
Enclosure Breadth	
Glass Sunshade Wall	
Enclosure Redesign (Mechanical)	
Enclosure Redesign (Architecture)	
Conclusion	
Appendix A:Banded Beam	
Appendix B: Two-Way PT Flat Plate Slab	46
Appendix C: Column Hand Calculations	48
Appendix D: Column Investigations	
Appendix E: H.A.M. Toolbox Output	55
Appendix F: Heat Transfer and Moisture Analysis	61
Appendix G: Enclosure Structural Considerations	65
Bibliography	72

Executive Summary

The Weill Cornell Medical Research Building is a 19 story, 455,000 square foot, 294'-6" tall building located on East 69th Street in New York City. The building features three stories below grade and eighteen, plus a penthouse and an interstitial floor, above grade.

The purpose of this thesis was to design a pre-stressed concrete alternative to the existing reinforced concrete two-way flat plate floor slab. Two such systems were investigated. A banded beam system and a two-way post-tensioned flat plate slab were designed. It was determined that the two-way PT slab would be the better of the two alternatives. The criteria for the viability of these alternatives was the elimination of the need to camber the concrete slab for the front cantilever while still meeting deflection requirements and limiting floor-to-floor heights. This was accomplished. The slab was decreased in thickness from 12 $\frac{1}{2}$ inches to 10 inches. This has the added benefit of allowing more flexibility for MEP equipment and reducing the amount of concrete needed for the structure.

Following that, investigations were made into the possibility of altering the size of the massive 14 x 72 columns from which the cantilever extends, and into the removal of the columns in Row B. It was determined that the 14 x 72 columns are necessarily large and surprisingly well utilized. The investigation into the removal of the Row B columns showed that deflections would be much too severe and the idea was deemed not possible.

Finally, mechanical and architectural studies were conducted on the enclosure system resulting in a redesign of the system from a brick cavity wall to an EIFS wall system. The goals of the design of the new exterior wall system were to reduce the chance of condensation in the air space (a danger posed by the existing system), reduce the amount of heat loss and gain of the wall, and to create a thinner and lighter system. The new EIFS system performs better in preventing condensation and reducing heat transfer through the wall and was also deemed to be architecturally more versatile and more becoming of the Weill Cornell Medical Research Building.

Acknowledgements

I would like to thank the following people for their help throughout the year on this

project:

Severud Associates

Steve Reichwein

Janice Clear

Brian Falconer

Ennead Architects

Paul Stanbridge

The Pennsylvania State University

Dr. Thomas Boothby – Thesis Advisor

Professors M. Kevin Parfitt and Robert Holland

Dr. Linda Hanagan – Academic Advisor

I was also like to thank my friends and family, without whom I wouldn't be where I am or who I am today.

Introduction

The Weill Cornell Medical Research Building is the newest addition to the campus of the Weill Cornell Medical College on the upper east side of Manhattan. Located at 413 East 69th Street in New York City, the Medical Research Building is adjacent to other Weill Cornell buildings. The Weill Greenberg Center on its northeast side is an educational facility designed by the same architects as the Medical Research Building. Olin Hall to the east, and the Lasdon House to the north are residential buildings that house students of the medical college. 69th Street slopes down to the east across the site of the Medical Research Building and the utilities run under it. The Con. Edison power vaults are also located under 69th Street and the sidewalk in front of the building.

The \$650 million Medical Research Building is approximately 455,000 square feet with three stories below grade and eighteen, plus a penthouse and an interstitial floor, above grade. The total height of the building above grade is 294'-6." Floors 4-16 are dedicated to laboratory space. The first basement level, as well as the interstitial floor between floors 16 and 17, and the 17th and 18th floors are designated as mechanical floors. The bottom two levels of the basement contain the MRB's animal facility. Service and freight elevators and vertical circulation are located on the west side of the building next to the loading docks on the 69th Street side. Passenger elevators and vertical circulation are nearer the center of the building where the two story lobby atrium welcomes people into this hub of scientific exploration.

In the rear of the building, adjoining the second floor, there is a terrace that bridges the gap between the rear façade of the MRB and the Lasdon House. A grand staircase leads from the lobby on the ground floor up to the enclosed lounge on the second floor that opens onto the terrace. There are two entryways from the Lasdon House to the terrace so anyone living in that building and working in the Medical Research Building would have easy access. The terrace also wraps around the side of the Lasdon House and connects to a stairway leading down to the sidewalk on 70th street.

The building is defined visually by the undulating glass sunshade curtain wall across the front of the building. This curtain wall is attached to the floor slabs that are cantilevered

out approximately 9'-8" from the exterior row of columns to meet it. The curtain wall itself has two layers. The outer layer features the glass sunshade wall with aluminum mullions. This wall is tied to the inner layer of insulated glass (also with aluminum mullions) by aluminum struts. The inner layer is anchored to the slab either directly through the mullion or with a steel outrigger.

Structural Systems

Foundation System

The foundation system consists of spread footings bearing on undisturbed bedrock. Strap beams are provided as necessary around the perimeter. This undisturbed bedrock is expected to support 40 tons per square foot. According to the geotechnical report, there are two types of bedrock encountered on the site. One type supports 40 tsf and the other 60 tsf, but it is recommended by Langan Engineering and Environmental Services that the footings be designed to rest on 40 tsf bedrock. The slab on grade is a 6" concrete slab resting on a 3" mud slab on 24" of crushed stone. The perimeter concrete walls of the basement are 20" thick with strip footings. Below, Figure 1 is an image of the foundation plan.

The geotechnical report also states that the water table is approximately 50 feet above the foundation level. This poses the problem of seepage through the rock and also uplift on the foundation. A few different design solutions are presented in the geotechnical report. The resolution of this problem comes in the form of 4-50 ton rock anchors located at the bottom of Stairwell B on the East side of the building to resist the uplift.

Figure 1: Basement Level 3 – Foundation Plan

Floor System

The floor system in the Medical Research Building is 2 way flat plate concrete slabs. These slabs vary in depth from floor to floor (see Figure 2 below). The bottom reinforcement is typically #5 bars at 12." Top reinforcement and additional bottom reinforcement varies as needed throughout the building. The slabs are especially thick in this building because much of the design was constrained by strict vibration requirements of the medical and research equipment in the building. Laboratory floors were designed to limit vibration velocities to 2000 micro-inches per second. Walking paces were assumed to be moderate (75 footfalls per minute) in the labs and corridors and fast (100 footfalls per minute) only in public areas such as the lobby. There are also vertical HSS members at alternate floors through the middle of the building where the laboratories are located. These members serve no structural load bearing purpose, they are simply meant to tie each floor to another floor to further limit vibrations by forcing any impact to excite vibrations in two floors instead of just one.

	Slab Depth
Floor	(in)
B3	6
B2	12.5
B1	12.5
1	11
2	12
3	12.5
4	12.5
5	12.5
6	12.5
7	12.5
8	12.5
9	12.5
10	12.5
11	12.5
12	12.5
13	12.5
14	12.5
15	12.5
16	12.5
Interstitial	10.5
17	10.5
18	12.5
19	10.5

The front of the building features a cantilever slab extending approximately 9'-8" from the center of column line D. The glass sunshade curtain wall is connected to the edge of the slab. The slab is the same thickness as the rest of the floor, but is cambered up to reduce deflections caused by the curtain wall load. On the second floor, the slab is cambered 1" upward. For the third through the interstitial floors, the slab is cambered 5/8" upward.

Figure 2: Slab Depth per Floor

Lateral System

Lateral loads, such as seismic and wind loads, are primarily resisted by 14"-16" reinforced concrete shear walls located around the stairwells and elevator cores. A couple of these shear walls step in at the second floor. Extra precautions were taken to make sure that the lateral moment still has a viable path to travel through that step in. Severud, the structural engineers for the project, desired to transfer lateral loads toward the perimeter of the building. In the front of the building there are massive 14 x 72 inch columns from which the slabs cantilever out and the glass sunshade curtain wall is hung. These columns also take

some of the lateral loads. See the sketch in Appendix E for the location of lateral system elements on a typical floor.

Beams and Columns

There is a very wide variety of beam and column sizes in this building. There are almost forty different sizes of columns with dimensions ranging from 12" to 84," with the most common column being 24 x 36. There are also approximately fifty five different sizes of beams ranging from 8 x24 to 84 x 48. Except on the laboratory floors, which are quite uniform, the column sizes tend to change from floor to floor. Reinforcement was provided to ensure the continuity of the load path through these column transfers.

Columns are located on the specified grid of 4 major rows in the East-West direction for the majority of the floors—except the first floor and below grade, which have a fifth row in the back of the building. Bay sizes are 27'-7," 25'-0," and 16'-3" in the North-South direction and the typical bay in the East-West direction is 21'-0" with end spans approximately 22'-6." Beams, however, are only placed where they are needed. They are rarely in the same place from floor to floor and each floor has a different number of beams. The fourth floor has the fewest with 6, and the second floor has the most with 33. Below in Figure 3 is a typical framing plan for the 5th-15th floors.

Figure 3: Typical Framing Plan – 5th-15th Floors

Design Codes and Standards

The Weill Cornell Medical Research Building was designed according to the 1968 New York City Building Code based on the UBC. In 2008 New York City updated their building code, which is now based on the IBC. For this report, the new 2008 code for analysis and design is being used; which references ASCE 7-02, ACI 318-02, etc. For relevance, ASCE 7-05, ACI 318-08, and the AISC Steel Construction Manual 14th ed. will be referenced in this report. The design for the Medical Research Building was submitted in 2008 and the project team decided to file under the old code. The MRB is located in New York City's zoning district R8, the use group is 3 (college), the construction class is I-C, and the occupancy group is D-2.

Proposal Objectives

Problem Statement

Technical Reports one, two, and three showed that the structural systems of the Weill Cornell Medical Research Building are adequate for both strength and serviceability requirements. However, there is one portion of the design that, while not an unsuccessful solution, has sufficient potential flaws to require a further investigation into alternative solutions.

In the existing design of the floor system, a two-way flat plate slab is used to minimize floor to floor heights. The nearly ten foot cantilever on the front of the building, from which the curtain wall is hung, presents a challenging problem of resolving deflection issues. The existing design solution calls for a 5/8" camber of the concrete slab for the cantilever portion. This solution has multiple potential hazards. First, cambering concrete is not an exact science. One can only really design the camber to balance deflection from dead loads however the slab is subjected to live loads from the offices and conference rooms located on the cantilever as well. There is also the issue of constructability. It is difficult to execute a cambered cantilever slab on a job site and inspections would have to be made that

it was done well enough, and uniform enough throughout the floors. Any errors in construction or too much deflection in the cantilever could have disastrous effects on the glass sunshade curtain wall that is tied to the edge of the cantilevered slabs at every floor.

Lastly, this solution is very vulnerable to creep. Concrete is infamous for creep under sustained load. In this design situation, the load of the curtain wall exacerbates the creep problem. If another floor system could be designed to eliminate the need for manually cambering a concrete slab, while still meeting deflection requirements for the cantilever section and keeping floor to floor heights at a minimum, this system would be a viable alternative.

Problem Solution

In the second technical report, multiple floor systems were assessed based on structural and non-structural criteria and it was deemed that a post-tensioned system was the best alternative to the two-way flat plate slab system. Two types of post-tensioned floor systems will be investigated: a banded beam system and a post-tensioned slab system. The inherent deflection-reducing characteristics of post-tensioned concrete make it a good solution for the cantilever for multiple reasons. A post-tensioned floor system would reduce the deflections and reduce the significance of creep. It is also easier from a constructability point of view than a cambered two-way slab. These post-tensioned systems will be designed using methods learned in AE 431 as well as design guides and computer programs.

Due to the post-tensioned system's ability to cover large spans, after designing the new floor system, a couple of options will be assessed regarding the column layout. First, it will be determined if the 14x72 columns that support the cantilever can be reduced in size while still maintaining deflection requirements. Since these columns take lateral loads as well, if they change in size, the building's lateral system will also need to be reevaluated. Second, the impact of removing column row B in the laboratory spaces will be considered. This will create an elongated span adjacent to the cantilever span and could help balance deflections. Eliminating a row of columns will also potentially have effects on the sizes of the remaining columns. The magnitude of these effects will also be investigated.

Breadth Topic: Building Enclosure

The breadth investigation will be a redesign of the brick cavity curtain wall system that encloses three of the four sides of the building (the fourth side being the front with its undulating glass curtain wall). The new curtain wall system will be designed according to structural, mechanical, and architectural criteria. Methods of design and analysis learned in AE 542 will be essential to the completion of this breadth study. First the new system's fenestration will be designed to withstand lateral loads due to wind, seismic, impact, and blast events. Next, the moisture and heat transfer characteristics of the curtain wall will be examined using H.A.M. Toolbox (this will constitute the mechanical portion of the breadth). After the new curtain wall design is completed, a Revit model of both systems will be produced in order to compare the architectural features of the new system with the old (this will constitute the architectural portion of the breadth).

MAE Course Related Study

Information acquired in AE 597A will be applied in order to model the building in either ETABS, SAP, or RAM. Understanding the methods by which the computer program arrives at its solution allows for a better analysis and scrutiny of results. Also, methods and tools learned in AE 542 will be used in order to complete the redesign of the building enclosure and analyze it.

Structural Depth

For the redesign of the floor system, there were three floors chosen to design as representative of the entire structure. The Typical Floor refers to floors 3 through 16, which are, structurally, essentially identical. The 17^{th} and 18^{th} floors, which serve as two of the mechanical floors at the top of the building, were chosen to be specifically designed for loading conditions that were characteristic of the other floors. The dead and live loads used in the design of these floors are summarized in the chart below (Figure 4). All concrete used in the design was chosen to have $f'_c = 4000$ psi.

	Dead Load	Live Load
Level	(pst)	(pst)
Typical Floor	27, 47	60, 150
17th Floor	97	150
18th Floor	107	400

Figure 4: Design Loads for Floor System Redesign

Banded Beam System

The first investigation conducted for the redesign of the floor system was the banded beam. This system consists of a uniform slab with thickened portions along column lines (usually in the long direction). These thickened portions are typically post-tensioned and called "band-beams." All reinforcement used in this floor system is Grade 250 Seven-wire strands.

The one-way slabs were designed first using the method taught in AE 431 for the design of one-way pre-stressed slabs. The maximum compressive stress in the concrete was assumed to be $.45*f_c^2 = 1800$ psi. For the reinforcement, 18 - .196" strands were used with $f_{pu} = 250$ ksi and $f_{pi} = .7*f_{pu} = 175$ ksi. Pre-stress losses were assumed to be 15%. Initial thicknesses of the slabs were determined using the rule of thumb t $\leq L/45$, and then adjusted as necessary. There were 5 span conditions assessed in order to represent the various loading conditions on the design floors. These include the Typical Span of the Typical Floor, the longer End Span of the Typical Floor, Higher Load Areas of the Typical Floor, and the typical spans of the 17^{th} and 18^{th} Floors. An excel spreadsheet was developed to carry out the various calculations. The slabs were checked for stresses at transfer, stresses after losses, and ultimate load in flexure. The results of this design and analysis are summarized in the chart below (Figure 5). For the details of the calculations, see the spreadsheets in Appendix A.

Location	Superimposed Dead Load (psf)	Live Load (psf)	Thickness (in)	Prestressing	Spacing (in)
Typical Span	27	60	8	18196"	17
Typical Floor (End Span)	27	60	8	18196"	15
Higher Load Areas	47	150	8	18196"	15
17th Floor	97	150	10	18196"	20
18th Floor	107	400	14	18196"	15.50

Figure 5: Summary of One-Way Pre-stressed Slab Design

Next the band-beams were designed using the method taught in AE 431 for the design of pre-stressed beams. The typical horizontal column-to-column distance is 21 feet and it was decided that the beam (or thickened portion of the slab) would be six feet wide, which is just under a third of the of the beam's tributary distance. All of the beams were designed with bundles of 12 - 3/8" strands spaced evenly along the width of the member. The design span conditions for the beams consist of the Typical, Edge Beam, Higher Load, and Cantilever spans of the Typical Floor, as well as the typical spans of the 17^{th} and 18^{th} Floors. Again, an excel spreadsheet was developed to carry out the calculations for the design of the beams. A summary of the design is featured in the chart below (Figure 6). For the details of the calculations see the spreadsheets in Appendix A.

Location	Superimposed Dead Load	Live Load (psf)	Beam Height (in)	Reinforcement Depth (in)	$A_p(in^2)$	Tendon Spacing (in O.C.)	M _u (kip-ft)	φM _n (kip -ft)
	(pst)							
Typical	27	60	14	11.5	5.76	12	351	787
Edge Beam	27	60	14	11.5	2.88	24	232	393
Cantilever	27	60	14	11.5	5.76	12	294	787
Higher Load Areas	47	150	14	11.5	5.76	12	574	787
17th Floor	97	150	14	11.5	5.76	12	654	787
18th Floor	107	400	16	13.5	11.52	6	1214	1360

Figure 6: Summary of Band-Beam Design

Two-Way PT Flat Plate Slab

The second system investigated for the floor system redesign was a two-way posttensioned flat plate slab. In order to design and model the post-tensioned slab, RAM Concept was used. Produced by Bentley Systems, Inc., RAM Concept is a wonderful tool for both reinforced and pre-stressed concrete analysis and design. Concept uses the finite element method for elevated concrete floor systems. While other structural analysis problems reduce the structure to a frame model in order to be solved, Concept's use of the finite element method produces more precise results, especially when the structure is irregular.

The two-way post-tensioned slab was modeled following the tutorial provided in the RAM Conce*pt* Manual for modeling of two-way PT flat plate slabs using ACI 318-05. First, the floor plans were drawn in AutoCAD and imported into Conce*pt* (see Figure 7 for the Typical Floor plan drawn in AutoCAD). The structural elements, i.e. slab area, slab

openings, columns, and shear walls, were defined by tracing the elements on the CAD drawing. A thickness of 10 inches was chosen for all two-way slabs. An initial mesh was

Figure 7: Typical Floor Plan Drawn In CAD

created and then the superimposed dead and live loads were placed.

Next the post-tensioning was designed. For all of the two-way slabs, bundles of 12 strands of ½" diameter unbonded tendons were used. Minimum clear cover top and bottom was assumed to be 1 ½ inches. RAM Conce*pt* designates the two perpendicular directions of reinforcement in a two-way slab as latitude and longitude directions. First the latitude pre-stressing was laid out along the horizontal column lines, and then the longitude pre-stressing was placed manually with a typical spacing. These pre-stressing tendons were then manually manipulated to avoid the openings in the floor slab. Conce*pt* then generated latitude and longitude design strips and column locations were noted for punching shear checks. The mesh was then regenerated and results calculated.

RAM Conce*pt* calculates results using all of the above inputs. It then designs the necessary non-prestressed reinforcement and checks all of the results against the chosen code, in this case ACI 318-05 (the most up-to-date version of the ACI code available in the version of RAM Conce*pt* used).

A simplified summary of the typical longitudinal reinforcement spacing, approximate maximum deflection, and approximate maximum moment is presented in the chart below (Figure 8). Also, diagrams of the mesh elements (slab, openings, columns, and shear walls), as well as of the distribution of deflection and moment are shown below (Figures 9-17). For the layout of both directions of reinforcement, see Appendix B.

Level	Long. Spacing	Max Deflection (in)	Max Moment (kip-ft)
Typical Floor	5-7 ft	0.225	500
17th Floor	5-6 ft	0.24	850
18th Floor	5-7 ft	0.24	1000

Figure 8: Simplified Summary of Two-Way PT Flat Plate Slab Design

Figure 9: Typical Floor Plan

Figure 10: Typical Floor Moments

Min ∆ Figure 11: Typical Floor Deflections

Figure 12: 17th Floor Plan

Figure 13: 17th Floor Moments

Min Δ Figure 14: 17th Floor Deflections

Max ∆

Figure 15: 18th Floor Plan

Figure 16: 18th Floor Moments

Results and Comparison

The use of post-tensioning in the floor system proved to be a good alternative to the existing two-way flat plate slab design. Of the two post-tensioned systems investigated, the two-way flat plate slab worked best; echoing the best non-prestressed floor system option.

The banded beam system was successful in strength, showed negligible deflections (most of which were in the hundredths or thousandths of an inch), and fulfilled the necessary structural design criteria for this investigation. There would be no need to camber the concrete in the cantilever and, except on the 18th floor, less overall concrete would be needed. However, due to the complicated nature of the mechanical equipment in the laboratory spaces and the potential need for flexibility in MEP placement, it was decided that having beams along the column lines would restrict that MEP freedom and create the potential for overcrowding in the regions under the one-way slab, or force the floor-to-floor heights to increase.

For that reason, the post-tensioned two-way flat plat slab was chosen as the most viable alternative to the existing design. On the Typical Floors, there would be no need to camber the concrete. According to the results from RAM Concept, the cantilever would see the greatest deflections of any other region of the slab, but even those deflections were limited to approximately 0.225 inches, which is just less than L/480. The 17th and 18th floors showed their maximum deflections along the front of the building as well, but most of the deflections throughout all three slabs were in the hundredths and thousandths of an inch.

Along with eliminating the need to camber the slab, the PT flat plate slab has the advantage of significantly reducing the amount of concrete used in the building. The post-tensioned design features a ten inch slab which is a full 2.5 inches less than the typical depth of the existing slab design. Over 18 stories, that equates to 3.75 feet. According to the *Prestressed Concrete Designer's Handbook* (Abeles and Bardhan-Roy), "there is little difference between the initial costs of reinforced and prestressed members." However, with almost the entirety of the structure (including columns and shear walls) being concrete, that is a substantial decrease in the amount of concrete needed. Overall building height might not be an issue since the building is located in New York City, but at the very least, this PT flat plate slab provides more space and flexibility for MEP equipment.

According to the project structural engineer at Severud Assoc., prestressed concrete is not typically employed in New York City. This might be due to unions or perhaps to the extra labor involved in the jacking of the tendons and the potential for more job site inspections to ensure the post-tensioning process is carried out properly. Whatever the case may be, if post-tensioning were a more common practice in New York City, then a posttensioned two-way flat plate slab would be the best choice of floor system.

Column Investigations

14 x 72 Columns:

At first, the idea of a six foot long, essentially (and literally in some spots) one foot wide, column makes one think, "that's not a column, that's a wall." Would these columns be eyesores, or simply an unnecessary amount of concrete? Also with its proximity to the edge of the cantilevered slab (9'-8" from the column centerline, would the space feel awkward?

Upon visiting the site in February of 2012, it was observed that, visually, the extremely long and awkwardly skinny columns did not feel out of place. Despite some concrete consolidation issues, which appear minor enough to avoid worries of spalling and that need some finishing touches, these columns actually look good. They are thin enough to blend with what will be the divisions between offices located on the cantilever. As can be

seen in the partial floor plan below (Figure 18), the architect made full use of the columns to lay out the offices and provide as much potential window space and view as possible.

Upon investigating the structure and the post-tensioned slab system, it was determined that deflection was a critical criterion for the design of the cantilever and decreasing the size of the massive columns anchoring the cantilever would only exacerbate that situation. Therefore, it was decided that these columns should be left their original design size.

Figure 18: Partial Typical Floor Plan

Removing Row B Columns:

New Column Sizes and Designs

If the columns in row B were to be removed, this would invariably place a larger load on the columns in rows A and C. A typical column in the 3rd vertical row was chosen to analyze and redesign as a representative of the magnitude of the increase in load caused by removal of row B columns. Hand calculations with the use of design aids from *Reinforced Concrete Mechanics and Design* (Wight and MacGregor) were performed to size the new column and design the reinforcement (see Appendix C). The columns were assumed to only take axial loads and a reinforcement ratio of 2% was used.

For Column A3, the original size was 44 x 20 with an axial load of 1555 kips and 16 #9 bars. The new axial load was determined to be 2518 kips and the new Column A3 was designed to be 48 x 24 with 16 #11 bars (φ Pn = 3464 kips). The original Column C3 was 36 x24, with an axial load of 1520 kips and 16 #7 bars. The new Column C3 was found to have an axial load of 2493 kips and was designed to be 42 x 28 with 16 #11 bars (φ Pn = 3517 kips). The new column details were drawn in AutoCAD and can be seen below

(Figure 19). The columns were then modeled in SP Column in order to obtain the interaction diagrams. These results can also be viewed below (Figures 20 and 21).

Figure 19: (Left) New Column A3, (Right) New Column C3

Figure 20: New Column A3 in SP Column

Figure 21: New Column C3 in SP Column

Effects on Floor Systems

The span between column rows A and B is 27'-7" and the span between rows B and C is 25,' so removing the columns in row B increases the longest span of the floor system to 52'-7." The effect of this on both post-tensioned floor system alternatives was studied.

For the banded beam system, the same excel spreadsheets were employed to design the band-beams. Once again, the beams were chosen to be 6 feet wide and bundles of 12 strands were used. However, instead of the 3/8" strands used in initial band-beam design, 1/2" tendons were necessary for this longer span. The results of this design are summarized in the chart below (Figure 22). For the details of the calculations see the spreadsheets in Appendix D.

Location	Superimposed Dead Load (psf)	Live Load (psf)	Beam Height (in)	Reinforcement Depth (in)	A _p (in²)	Tendon Spacing (in O.C.)	M _u (kip-ft)	φM _n (kip -ft)
Typical	27	60	14	11.5	11.52	6	1275	1352
Higher Load Areas	47	150	16	13.5	31.10	6	2129	2052
17th Floor	97	150	18	15.5	20.74	6	2461	2705
18th Floor	107	400	24	21.5	20.74	6	4579	4650

Figure 22: Summary of Band-Beam Design, Column Investigation

To measure the effect of removing the Row B columns on the two-way flat plate slab system, RAM Concept was used. All of the inputs were the same, except the Row B columns were removed from the mesh elements. A simplified summary of the results of this

design can be seen in the chart below (Figure 23). Diagrams of the mesh elements (slab, openings, columns, and shear walls), as well as of the distribution of deflection and moment are shown below (Figures 24-32). For the layout of both directions of reinforcement, see Appendix D.

		Max Deflection	Max Moment (kip-
Level	Long. Spacing	(in)	ft)
Typ Floor	3-4 ft	2	1500
17th Floor	4-6 ft	2.5	1700
18th Floor	3-6 ft	2.5	2000

Figure 23: Simplified Summary of Two-Way PT Flat Plate Slab Design, Column Investigation

Figure 24: Typical Floor Plan, Row B Columns Removed

Figure 25: Typical Floor Moments

Figure 27: 17th Floor Plan, Row B Columns Removed

Figure 28: 17th Floor Moments

Max ∆

Min Δ Figure 29: 17th Floor Deflections

Figure 30: 18th Floor Plan, Row B Columns Removed

Figure 31: 18th Floor Moments

Results and Column Conclusions:

As is obvious, neither post-tensioned floor system fared well when the columns in Row B were removed. For the banded beam system, the height of the beam was forced to increase dramatically as a result of the increased loads. This would further limit the freedom of the MEP layout and further reinforces the exclusion of the banded beam system as a viable alternative to the existing design.

For the two-way post-tensioned flat plate slab system, as can be seen in the diagrams from RAM Concept, there were extreme deflections in the areas where the columns in Row B originally were. Despite efforts to increase the amount of post-tensioned tendons, thicken the slab, as well as change the spans of the individual tendons, a solution could not be found to alleviate the severe deflections caused by removing the Row B columns. Therefore, removing columns is deemed not feasible even with the added benefits of a post-tensioned concrete system. The column design both in the layout and sizes, as confirmed by this investigation, was very well executed by the original architects and engineers.

Enclosure Breadths

Glass Sunshade Wall

The spectacular, striking, shining feature of the Weill Cornell Medical Research Building is the undulating glass sunshade curtain wall that unfolds itself across the front façade of the building. This is a double layered curtain wall, which serves to naturally ventilate itself as well as filter light and keep the solar heat from entering the building, as shown in the diagram below (Figure 33). This curtain wall's visually engaging design reflects the innovative and stunning research that will hopefully be going on inside. A rendering of the curtain wall is also shown below looking up from the front entrance to the building (Figure 34).

Figure 33: Glass Sunshade Wall Double Layer Detail (Image courtesy of Ennead Architects)

Figure 34: Glass Sunshade Wall Rendering (Image courtesy of Ennead Architects)

Enclosure Redesign (Mechanical)

Brick Cavity Wall:

The enclosure system that was chosen to be investigated and redesigned was the brick cavity wall, which is featured on the other three sides of the building. This system is comprised of beige four inch roman style bricks on the exterior, followed by a three inch air space, three inches of rigid insulation, an air/vapor barrier, and an eight inch concrete wall on the interior. On the north face of the building, the exact opposite of the side featuring the glass sunshade wall, there are horizontal ribbon windows across the length of the façade (see the partial elevation in Figure 35).

WT-4 GL-E1		
119.		

Figure 35: Partial Elevation – Ribbon Windows

First, the system was modeled using H.A.M. Toolbox, made by Quirouette Building Science Software. The Heat, Air, and Moisture analysis done by the program is based on inputting the materials that make up the wall and the city in which the structure is located. The first tool used was the R Value Analysis. This yielded the R Value, or thermal resistance, for each layer and a diagram which shows the location of the dew point within the wall system. The printout of the R Value Analysis results can be found in Appendix E.

Next, a heat transfer analysis was performed manually using an excel spreadsheet. First, the R Values given by H.A.M. Toolbox were converted to U Values. The sum of R Values was used to determine the overall heat transfer coefficient (U) of the wall system.

The design indoor and outdoor temperature conditions, as specified for New York City by H.A.M. Toolbox, were listed and used to calculate the total heat loss or gain for the summer and winter conditions. For this calculation a sample area of 30 square meters was used. It was determined that the existing brick cavity system gained 20.16 W/m²*K in the summer and lost 63.84 W/m²*K in the winter. To view the complete excel spreadsheet, see Appendix F.

The final mechanical investigation carried out on the existing enclosure system was a moisture analysis. First H.A.M. Toolbox's Condensation Analysis tool was used. The wall system was analyzed for both summer and winter conditions. The output included the R_{vap} Values and a diagram showing that there was no condensation for either the winter or summer condition (Appendix E). There were a couple of areas where the amount of vapor in the wall system was close to the saturated vapor level.

For the purpose of studying this further, a manual moisture analysis was carried out using an excel spreadsheet. This spreadsheet used the material thickness, conductivity (K) taken as the inverse of the R Value given by H.A.M. Toolbox, vapor permeance (M) taken as the inverse of the R_{vap} Values given by H.A.M., as well as the design indoor and outdoor temperature and humidity conditions to compute the temperature, pressure, and relative humidity at the interface of each layer of the wall system. The change in temperature at each layer was found by taking the total change in temperature across the system and multiplying by the ratio of the R Value of the layer to that of the entire wall. The saturated pressure values for each layer interface were obtained using the formula $P_{sat} = 1000 * e^{I52.58 \cdot 6790.5/T-5.028(lnT)]}$, where T is the temperature in Kelvin. Pressure values for each layer interface were determined in a similar fashion to the temperatures, except that the total change in pressure was multiplied by the corresponding ratio of R_{vap} Values. The relative humidity at each layer is the ratio of the pressure at a given interface to the saturated pressure at that interface. For the complete spreadsheets for the H.A.M. Toolbox design conditions for New York City see Appendix F.

The results of this analysis showed that the layer interface with the highest relative humidity, and therefore, the interface that would first see condensation was the air/vapor barrier in the summer and the interior of the brick in the winter. This is fine for the summer because the vapor barrier would be able to protect the other layers from condensation

forming there, however, the winter condition could pose greater problems. If condensation were to form on the interior of the brick, there would need to be sufficient mechanisms for drainage within the air space as well as the necessary weep holes at the base of the wall.

New Wall System:

It was decided that another exterior wall system should be designed to try to decrease the potential for condensation forming in the air space. Also, this new system would hopefully decrease the amount of heat loss in the winter and heat gain in the summer. The ideal system would also be thinner and lighter weight than the existing brick cavity wall.

Changes were made to every layer except the air/vapor barrier in order to accomplish these goals. Starting on the interior of the wall, the solid eight inch concrete wall was replaced by a six inch CMU, the three inches of expanded rigid insulation was replaced by two and a half inches of extruded rigid insulation, the air space was decreased from three inches to two inches, and finally, the four inch brick was replaced by inch and a quarter exterior insulation finishing system (EIFS). By observation this new EIFS system was lighter weight and thinner, but would it perform better than the brick cavity wall?

The same analyses were carried out for the EIFS system that had been for the brick cavity system. The R Value Analysis results for the EIFS system can be seen in Appendix E. The total R Value of this new system was 19.23; versus that of the brick cavity wall, which was 18.05. The heat transfer analysis yielded a heat gain of 15.6 W/m^2 *K in the summer and a heat loss of 49.4 W/m²*K in the winter. Both values were less than those of the brick cavity wall. Full spreadsheets of the heat transfer analysis can be found in Appendix F. Next the moisture analysis was carried out using H.A.M. Toolbox and the excel spreadsheet developed earlier. The results of the Condensation Analysis in H.A.M. showed a visible increase in the distance between the vapor content of the wall and the saturation level of vapor once inside the wall system. The spreadsheet moisture analysis showed a dramatic decrease in the relative humidity levels within the system. The highest relative humidity would be kept outside the wall system entirely with condensation only occurring on the exterior face of the EIFS when the air outside was saturated. The H.A.M. Condensation Analysis output and the moisture analysis spreadsheets can be found in Appendices E and F, respectively.

Overall, mechanically, this new EIFS system performed much better than the brick cavity wall. The heat losses and gains were diminished, the potential for condensation within the air space was mitigated, and the design was lighter and thinner. Thus, the EIFS wall system accomplished all of the design goals and is deemed a better choice mechanically for the Weill Cornell Medical Research Building.

Enclosure Redesign (Architecture)

Revit Models:

In an attempt to get a better idea of what the original brick cavity wall system design and the new EIFS system would look like, a Revit model of a mock-up size portion of the wall was created. By using Revit, a more realistic visual could be created than CAD drawings or even the wall cross-section diagram produced by H.A.M. (see output in Appendix E) could provide. Revit has the capability to model the wall system with specific details that are able to be customized for each layer. A quasi-realistic view of the wall systems in section is shown below (Figure 36). Also, renderings of the mock-ups were created. These can be seen below as well (Figure 36). The color of the EIFS was chosen to

match that of the brick of the existing wall system, but the design is more flexible than that (as will be discussed later).

Figure 36: (Far Left) Brick Cavity Wall in Section, (Left) EIFS Wall in Section, (Right) Brick Cavity Wall Rendering, (Far Right) EIFS Wall Rendering

Exterior Insulating Finishing System (EIFS):

EIFS is an incredible versatile exterior finish for wall systems. It works to insulate and protect while being flexible enough to accommodate essentially any kind of aesthetic style. Though sometimes referred to as "synthetic stucco," it is, in fact, nothing like stucco.

EIFS has three main components: insulation board, base coat, and finish coat. The first part of the system applied is an insulation board typically made of polystyrene (or similar materials). Then a base coat is applied which is reinforced with a fiberglass mesh. Finally a finish coat is applied. It is the finish coat that often looks like stucco and causes people to make the comparison. Typical layering of an EIFS system is shown in the diagram below (Figure 37).

Figure 37: Typical EIFS Construction

There are many advantages to using EIFS. The visual appearance is perhaps more flexible than any other type of cladding, except maybe precast concrete. EIFS can be produced in any color and be made to look like any other type of material. Also, as shown in the mechanical analyses, EIFS out-performs brick in insulation and moisture protection. Also, studies have shown EIFS to decrease air infiltration as well by up to 55%.

For the Weill Cornell Medical Research Building, the EIFS system would represent the new wave of cutting edge research going on inside and continue the bold exterior expression of the building began by the glass sunshade wall. The original design of beige brick was to match existing buildings adjacent to the Medical Research Building. Due to the flexibility of EIFS, that same color could be used and the exterior could also even be made to look like the same beige roman bricks that were originally designed. Overall, the EIFS system makes a viable, and perhaps better, alternative to the brick cavity wall.

Structural Considerations:

For the new wall system, the ribbon windows were designed for wind, seismic, impact, and blast criteria. Each window panel is 5'-3" wide and 2'-9" high. First it was decided that the window would be an insulating glass unit (IGU) with a laminated exterior lite and monolithic interior lite. Also, annealed glass was chosen at the outset of design. ASTM E1300 was used for the glazing design and ASCE 7-05 was used to calculate wind loads. Blast loads ended up controlling the design and requiring a 5mm thick laminated glass unit (LGU) with heat-strengthened glass for the exterior lite and a 3mm fully tempered monolithic interior lite. The details of the calculations and the graphs from ASTM E1300 used can be found in Appendix G.

Conclusion

For the Weill Cornell Medical Research Building, two pre-stressed alternatives to the existing reinforced concrete two-way flat plate floor slab were investigated. A banded beam system and a two-way post-tensioned flat plate slab were designed. It was determined that the two-way PT slab would be the better of the two alternatives. The criteria for the viability of these alternatives was the elimination of the need to camber the concrete slab for the front cantilever while still meeting deflection requirements and limiting floor-to-floor heights. This was accomplished. The slab was decreased in thickness from 12 ½ inches to 10 inches. This has the added benefit of allowing more flexibility for MEP equipment and reducing the amount of concrete needed for the structure.

Following that, studies were conducted into the possibility of altering the size of the massive 14 x 72 columns from which the cantilever extends and into the removal of the columns in Row B. It was determined that the 14 x 72 columns are necessarily large and surprisingly well utilized. The investigation into the removal of the Row B columns showed that deflections would be much too extreme and the idea was deemed not possible.

Finally, mechanical and architectural studies were conducted on the enclosure system resulting in a redesign of the system from a brick cavity wall to an EIFS wall system. The new system performs better in preventing condensation and reducing heat transfer through the wall and was also deemed to be architecturally more versatile and more becoming of the Weill Cornell Medical Research Building.
Appendix A: Banded Beam System

Pre-stressed One-Way Slab Spreadsheets

Typical Span

Typical Floor (End Span)

Typical Span							Typical Floor (End Span)						
Assumptions:	f'.=	4000	nsi				Assumptions:	f'.=	4000	nsi			
/ losumptions.	6 AF #61	4000	201				/ astriptions:	6 45.46	4000	pol			-
	t _{cmax} = .45*t' _c =	1800	psi					t _{cmax} = .45*t' _c =	1800	psi			
	f _{pu} =	250000	psi					f _{pu} =	250000	psi			
	f - 7*f -	175000	nci					f - 7*f -	175000	nci			
	1pi - 17 1pu -	1,5000	55					1pi - 17 1pu -	1, 3000				-
	C _{cmin} =	2	in					C _{cmin} =	2	in			
	Prestress Losses =	15	%					Prestress Losses =	15	%			
Design for 1' wide strip, b =	12	in					Design for 1' wide strip, b =	12	in				
Span of One-Way Slab =	21	ft					Span of One-Way Slab =	22.625	ft				
Clab Thickness							Slob Thiskness						
Slab Inickness							Slab Inickness						
t ≤ L/45 =	5.6	in					t ≤ L/45 =	6.033333333	in				
Try:t=	8	in					Try:t =	8	in				
Loads							Loads						
Dead Load:	Self-weight =	100	nsf				Dead Load:	Self-weight =	100	nsf			
Deud Lodd.	Superimpered -	200	psi				bedd codd.	Superimpered -	200	psi			
	Superimposed =	21	psr					superimposed =	27	psr			
Live Load:	Typical floor =	60	psf				Live Load:	Typical floor =	60	psf			
Prestressing Force							Prestressing Force						
Trestressing Force	100						Trestressing Force						-
w _o = Dead Load =	12/	pst					w _o = Dead Load =	12/	pst				_
w _o = 8Ph/L ² =>	$P_{e}h = w_{o}L^{2}/8 =$	84010.5	in-lb/ft width				w _o = 8Ph/L ² =>	$P_{e}h = w_{o}L^{2}/8 =$	97515.16406	in-lb/ft width			
Tor h -	15	in					Terr h -	15	in				_
.19.11-		Ib /ft with the						CE040 40000	lb/ft.u.l.date				
P _e =	50007	io/it width					P _e =	03010.10938	io/it width				
P _i = P _e /.85	65890.58824	lb/ft width	w _i =	149.4117647	psf		P _i = P _e /.85	76482.48162	lb/ft width	w _i =	149.4117647	psf	
Check Stresses							Check Stresses						
· · · · · · · · · · · · · · · · · · ·		12				_			12				
A =	96	in"					A =	96	in"				-
S =	128	in ³					S =	128	in ³				
Stresses at Transfer:							Stresses at Transfer:						
w -w ··· -	22 41176471	nsf	unward				· · · · · · · · · · · ·	22 41176474	nsf	unward			
w _{net} = w _i - w _o =	22.411/64/1	psr	upward				$W_{net} = W_i - W_o =$	22.41176471	psr	upward			
$M_{(midspan)} = -w_{net}L^2/16 =$	-7412.691176	in-lb/ft width					$M_{(midspan)} = -w_{net}L^2/16 =$	-8604.279182	in-lb/ft width				
NA 12/0 _	14035 20325	in the /ft usid the					NA 1 ² /9	17200 55026	in the /ft usidth				
IVI(support) - TWnetL / 0 -	14023.30233	III-ID/IT WIUTI					IVI(support) - TWnetL / O -	1/206.33630	III-ID/It width				
													_
Stresses: f = P _i /A ± M/S							Stresses: f = P _i /A ± M/S						
Midspan: f =	686.3602941	±	57.91164982				Midspan: f =	796.6925169	±	67.22093111			
f	628 4496442	or	744 2710420	nei	< 1900 nci	or	f	720 4715957	or	962 012///9	nei	< 1900 nci	OF
1-	020.4400445	UI	/44.2/19459	psi	< 1000 h21	UK	1-	/29.4/1565/	01	005.915440	psi	< 1900 hsi	UN
Center Support: f =	686.3602941	±	115.8232996				Center Support: f =	796.6925169	±	134.4418622			
f =	570.5369945	or	802.1835938	psi	< 1800 psi	ОК	f =	662.2506546	or	931.1343791	psi	< 1800 psi	OK
End Support: f =	686.3602941	psi	< 1800 psi	ОК			End Support: f =	796.6925169	psi	< 1800 psi	ОК		
Strassas Aftar Lossas							Strarger After Logens:						_
Success Anter Losses.							Success Anter Ebisco.						-
w _{net} =	87	pst	downward				w _{net} =	87	pst	downward			
$M_{(midroap)} = -W_{net}L^2/16 =$	28775.25	in-lb/ft width					$M_{(midrano)} = -W_{max}L^2/16 =$	33400.86328	in-lb/ft width				
(1112)210							(1112)210						
IVI(support) = +WnetL /8 =	-5/550.5	In-ID/IT width					IVI _(support) = +W _{net} L /8 =	-00801.72050	in-ib/it width				
Stresses: f = P./A + M/S							Stresses: f = P./A + M/S						
	F03 40C3F		224 00000 4000					677 4006303		200.0442444			
ivilospan: r =	583.40625	±	224.8006406				ivilospan: r =	677.1880393	1	260.9442444			
T =	358.5990094	or	808.2128906	psi	< 1800 psi	UK	r =	416.2443949	or	938.1328837	psi	< 1800 bsi	UK
Center Support: f =	583.40625	±	449.6132813				Center Support: f =	677.1886393	±	521.8884888			
f =	133.7929688	or	1033.019531	psi	< 1800 psi	ОК	f =	155.3001506	or	1199.077128	psi	< 1800 psi	OK
End Support: f =	583 40625	nsi	< 1800 nsi	OK			End Support: f =	677 1886393	nsi	< 1800 nsi	OK		
End Support: 1 =	303.40023	psi	< 1000 psi	UK			End Support. 1 =	077.1000355	psi	< 1000 p3i	OK		-
Prestressing lendons							Prestressing lendons		21				-
$A_p = P_i/f_{pi} =$	0.376517647	in ² /ft width					$A_p = P_i/f_{pi} =$	0.437042752	in²/ft width				
T	10	- 196" wire	۸ –	0.54	in ²		Ten	10	- 196" wire	A -	0.54	in ²	
iry.	10	130 Wile	np=	0.34			IIÿ.	10	14.000 WITE		0.34		
l	Spacing =	17.21034871	. In spacing				l	Spacing =	14.82692475	in spacing			-
Ultimate Load in Flexure	d _n =	6	in				Ultimate Load in Flexure	d _n =	6	5 in			
At midspan and middle support	0 = 4 /h*d -	0.0075					At midspan and middle support	0 = 4 /h*d -	0.007	5			
Unbonded tondess same (d	Pp - Rp/ 0 dp =	0.00/3				_	Unbonded tond	Pp - Apro dp =	0.00/2				-
onconded tendons, span/depth	 20 						unbonded tendons, span/depth	× 55					
f _{pe} = P _e /A _p =	103716.6667	psi	or f _{pe} = .6*f _{pu} =	150000	psi		$f_{pe} = P_e/A_p =$	120389.0914	psi	or f _{pe} = .6*f _{pu} =	150000	psi	
$f_{or} = f_{os} + 10000 + f'_{o}/3000 =$	161777.7778	psi	< f _{re} +30000 =	180000	psi		$f_{er} = f_{ee} + 10000 + f'_{e} / 3000 =$	161777.7778	psi	< f _{ee} +30000 =	180000	psi	
Max Reinf			-pe - 50000 =	100000		-	Max Reinf :			-pe - 50000 =	100000		
wax. Keint. :						_	iviax. Keinr. :						-
w _p ≤.36*β ₁ =	0.306						w _p ≤.36*β ₁ =	0.306					
$w_{-} = 0_{-} * (f_{-}/f'_{-}) =$	0.303333333						$w_{-} = 0_{-}^{*}(f_{-}/f'_{-}) =$	0.303333333					
p - pp tips/10							P Pp Ups/Ic/						
a = Ap*tps/.85*t'c*b =	2.141176471	in					a = A _p *t _{ps} /.85*t' _c *b =	2.141176471	in				
$M_n = A_n * f_{n'} * (d_{n-n/2}) =$	430633.4118	in-lb/ft	¢ =	0.9			$M_n = A_n * f_n * (d_n - a/2) =$	430633.4118	in-lb/ft	(h =	0.9		
	207570 0700	in th/ft	+-	5.5		-		207570.0757	in lh/ft	+-	5.5		
φM _n =	38/5/0.0706	m-ib/it					φM _n =	38/5/0.0706	mi-ib/it				
Plastic Hinge Analysis							Plastic Hinge Analysis						
Load to cause P.H. @ support:							Load to cause P.H. @ support:						
w = 8M /1 ² =	585.8957983	psf					w = 8M /1 ² =	504.756357	psf				
w - oivig/L -	555.0557905	P.41				_	w - owig/L -		P.41				-
Load to cause P.H. @ midspan:							Load to cause P.H. @ midspan:						
w=12M _o /L ² =	878.8436975	psf					w=12M _a /L ² =	757.1345355	psf				
Factored Applied Load:							Factored Applied Load:						
	2/19 /	nsf						2/10 /	nsf				
	240.4					_		240.4					-
$M_u = w_u L^2 / 8 =$	13693.05	in-lb					$M_u = w_u L^2 / 8 =$	15894.20391	in-lb				
Shear Capacity	d =	0.75					Shear Capacity	φ =	0.75	5			
1)/ 1 and 1/2ar	φ _v =	U. / S					1/2a · ·	φ, -	0.75				
$\phi V_c = \phi 2^* t_c^{*} b^* d_p =$	6830.519746	ib/It width					$\phi V_c = \phi 2^* t'_c^{} b^* d_p =$	6830.519746	ib/It width				
	2260.25	lb/ft uddtb				_	V., = 5/8*w*I =	3512,53125	lb/ft width				
V = 5/8*w*I =	3200.75	ib/it width											

Higher Load Areas

17th Floor

Higher Load Typical Floor							17 th Floor					
Assumptions:	f'c=	4000	psi				Assumptions:	f',=	4000	psi		
	f _{cmax} = .45*f' _c =	1800	psi					f _{cmax} = .45*f' _c =	1800	psi		
	f _{pu} =	250000	psi					f _{eu} =	250000	psi		
	f _{ni} = .7*f _{ni} =	175000	psi					f_= 7*f_= =	175000	nsi		
	C =	2	in					·pi · · ·pu	2	in		
	Prestress Losses =	15	%					Prestress Losses =	15	%		
Design for 1' wide strip, b =	12	in					Design for 1' wide strip, b =	12	in			
Span of One-Way Slab =	21	ft					Span of One-Way Slab =	21	ft			
Slab Thickness							Slab Thickness					
t≤L/45 =	5.6	in					t ≤ L/45 =	5.6	in			
iiy.t-	0						Iny: t =	10	in			
Loads							Loads					
Dead Load:	Self-weight =	100	psf				Dead Load:	Self-weight =	125	psf		
	Superimposed =	47	psf					Superimposed =	97	psf		
Live Load:	Typical floor =	150	psf				Live Load:	Typical floor =	150	psf		
Prestressing Force							Brostrossing Force					
w = Dead Load =	147	nsf					w - Dead Load -	222	nef			
w = 80b /12 =>	D h = w 12/0 =	07240 5	in th/ft uddth				w _o = Dead Load =	222	p31			
Wo-OPII/L	1 F ell = W ₀ L /0 =	97240.3	III-ID/IT WIGHT				w _o = 8Ph/L =>	$P_e n = w_o L / 8 =$	146853	in-Ib/ft width		
ny: 11 -	1.5	III 7 lb/ft width					Iry: n =	3	In the second states			
	701027	the feet of states		472 0444765			Pe=	48951	ib/it width			
P ₁ = P ₀ /.85	/6267.05882	ib/it width	w _i =	1/2.9411/05	psr		$P_i = P_e / .85$	57589.41176	lb/ft width	w _i =	261.1/64/06	pst
Check Stresses							Check Stresses					
Λ -		in ²					A 100K JU 63563	4.20	in ²			
	170	R in ³					A=	120	in ³			
Stresses at Transfer:	120						Stresses at Transfer	200				
W _{oot} = W ₁ - W ₋ =	25.94117647	7 psf	upward					39.17647059	psf	upward		
Many .= .w .1 ² /16	-8580 044119	in-lh/ft width					M - w 12/16	-12057 61765	in-lh/ft width	-proid		
M 12/0 - 12/0	17160 09934	l in-lh/ft width					(midspan) = "W netL / 10 =	-12957.01705	in the fermion			
(support) - + w _{net} L /8 =	17100.06824						rvl _(support) = +w _{net} L ⁻ /8 =	25915.23529	m-ib/it width			
Stracsos: f = P /A + M/S							Character 6 - D /A + AA/C					
Midenan: f	704 4495204		67 02150467				Stresses: r = P/A ± W/S	470 0447647		CA 70000004		
f =	727.4169347	 7 or	861.4801241	nsi	< 1800 ps	і ок	f =	4/9.911/64/	± or	544 6998529	nsi	< 1800 ps
	727.4205547		001.4001241	. p.s.	4 1000 p3	. 011		415.1250705	01	544.0550525	psi	< 1000 p3
Center Support: f =	794.4485294	± ±	134.0631893				Center Support: f =	479.9117647	±	129.5761765		
f =	660.3853401	L or	928.5117188	psi	< 1800 ps	і ОК	f =	350.3355882	or	609.4879412	psi	< 1800 ps
End Support: f =	794.4485294	l psi	< 1800 psi	ОК			End Support: f =	479.9117647	psi	< 1800 psi	ОК	
Strassas Aftar Lassas							Charles 464-14-14-14					
Stresses Arter Losses.	107	t nef	downword				Stresses After Losses:	272		d an one of the		
w _{net} -	197	her her	downwaru				w _{net} =	2/2	psr	downward		
M _(midspan) = -w _{net} L ⁻ /16 =	65157.75	in-lb/ft width					M _(midspan) = -w _{net} L ² /16 =	89964	in-lb/ft width			
M _(support) = +w _{net} L [*] /8 =	-130315.5	5 in-lb/ft width					$M_{(support)} = +w_{net}L^2/8 =$	-179928	in-lb/ft width			
Stresses: t = P/A ± M/S							Stresses: f = P _i /A ± M/S					
Midspan: t =	675.28125	5 ±	509.0449219	nel	< 1900 pc	04	Midspan: f =	407.925	±	449.82		1000
	100.2505281	0	1104.320172	, psi	< 1000 p3		T=	-41.895	or	857.745	psi	< 1800 ps
Center Support: f =	675.28125	5 ±	1018.089844				Center Support: f =	407.925	±	899.64		
f =	-342.8085938	3 or	1693.371094	psi	< 1800 psi	і ОК	f =	-491.715	or	1307.565	psi	< 1800 ps
End Support: f =	675.28125	5 psi	< 1800 psi	ОК			End Support: f =	407.925	psi	< 1800 psi	ОК	
Prestressing Tendons		1.710 1.111					Prestressing Tendons		. 7			
A _p = P _i /f _{pi} =	0.435811765	s in-/ft width			2		A _p = P _i /f _{pi} =	0.329082353	in*/ft width			
Try:	18	8196" wire	A _p =	0.54	in*		Try:	18	196" wire	A _p =	0.54	¦in⁴
	Spacing =	14.86880466	in spacing					Spacing =	19.69111969	in spacing		
ultimeter transfer =:							ultimate Local 1 -1		-			
orunate Load in Flexure	d _p =	. (ortimate Load in Flexure	d _p =	8			
At midspan and middle support	$p_p = A_p/b^*d_p =$	0.0075					At midspan and middle support	$\rho_p = A_p/b^*d_p =$	0.005625	1		
f _ p //	- 33) nci	orf - 6*6	150000	nci		unbonded tendons, span/depth	> 35	nel	orf - 145	450000	nei
$T_{pe} = P_e / A_p =$	120050	, h21	01 1 _{pe} 0-1 _{pu} =	150000	hai		T _{pe} = P _e /A _p =	90650	hai	or rpe = .6"Tpu =	150000	psi
$T_{ps} = T_{pe} + 10000 + t'_c/300\rho_p =$	161777.7778	s psi	< t _{pe} +30000 =	180000	psi		$t_{ps} = t_{pe} + 10000 + f'_{c}/300\rho_{p} =$	162370.3704	psi	< t _{pe} +30000 =	180000	psi
IVIAX, KEINT, 1							IVIAX. Keint. :	a				
w _p 5.36*β ₁ =	0.306	,					w _p ≤.36*β ₁ =	0.306				
$w_p = \rho_p^*(t_{ps}/t_c) =$	0.303333333	5					$W_p = \rho_p^*(T_{ps}/T_c) =$	0.228333333				
- 4 *6 / 07*6 *6	2 4 4 4 7 5 4 7 4	1					- 4 #6 / 07#61#1	2 4 40040500	1			
a = Ap Tps/.85 T c D =	2.1411/04/1	L IN					$a = A_p + T_{ps} / .85 + T_c + D =$	2.149019608	in			
$h_{1} = h_{1} + f_{2} + (d_{1} + d_{2})$	420622 4116	in lh/ft					h4 = 4 *f *(d = 2/2) =	607226 0904	in th/ft		0.0	,
$IVI_n = A_p \cdot I_{ps} \cdot (U_p - d/2) =$	450055.4110		φ-	0.9			IVI _n = A _p · I _{ps} · (u _p =d/2) =	007220.9804	111-10/10	φ-	0.9	,
φM _n =	36/5/0.0/06	, ini-iu/it					φM _n =	546504.2824	m-ib/it			
Plastic Hingo Analysis							Plastic Hingo Analysis					
Load to cause P.H. @ support:							Load to cause P.H. @ sunnort-					
w = 8M /1 ² =	585.8957983	8 psf					w = 8M /12 -	876 159157	nsf			
Load to cause P.H. @ midsnan	223.0337303						Load to cause P.H. @ midsnon:	520.155137	Pr. 41			
w=12M /I ² =	878.8436979	5 psf					w=12M /l ² =	1239.238735	psf			
Factored Applied Load	5, 0.04509/3						Factored Applied Load:	1233.230/33	P-31			
	416.4	psf					w =	506.4	psf			
M = w 1 ² /9	22954.05	in-lb					M - w 1 ² /0 -	37015 3	in-lb			
wuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu	22554.03						iviu – w _u L /8 =	2/915.3				
Shear Capacity	A -	0.70	5				Shear Capacity	ф -	0.75	5		
ΔV - ± 3*0 1/2*+++	φ _v =	U./:	,				AV - + 3*5' 1/2*1. * -	φ _v =	U./S			
$\psi v_c = \phi 2^{-1} c_c - D^* d_p =$	0030.519/40	, is/it width					$\psi v_c = \phi 2 \tau_c - b^* d_p =$	3101.323001	is/it width			
\/_== [/0\$ +)	EACE OF	lb/ft width					V = E /08···· #1	66.0C P	lb/ft width			
v _u = 5/6 W _u L =	5405.25	, synt wlutin					v _u - 5/ 8 W _u *L =	0046.5	io/ic width	<u> </u>		1

18th Floor

19 th Floor						
Assumptions	P	4000	nei			
Assumptions:	t'c=	4000	hai			
	f _{cmax} = .45*f' _c =	1800	psi			
	f _{pu} =	250000	psi			
	f _{pi} = .7*f _{pu} =	175000	psi			
	C _{cmin} =	2	in			
	Prestress Losses =	15	%			
Design for 1' wide strip, b =	12	in				
Span of One-Way Slab =	21	ft				
Slab Thickness						
t ≤ L/45 =	5.6	in				
Try: t =	14	in				
Loads			-			
Dead Load:	Self-weight =	175	pst			
	Superimposed =	107	psr			
Live Load:	Typical floor -	400	nef			
Live Loud.	Typical noor -	400	P 31			
Prestressing Force						
w_ = Dead Load =	282	psf				
w - 90h/1 ²	$P h = w l^2 / q -$	186542	in-lh/ft width			
w _o - or ii/L =>	r en - woL / O =	100345	io/it wiuth			
iry: n =	3	lh/ft width				
Pe=	02181	ib/it width				
$P_{i} = P_{e}/.85$	73154.11765	10/ft width	w _i =	331.7647059	pst	
Check Stresses		. 7				
A =	168	in ⁴				
S =	392	in³				
Stresses at Transfer:						
w _{net} = w _i - w _o =	49.76470588	psf	upward			
$M_{(midspan)} = -w_{net}L^2/16 =$	-16459.67647	in-lb/ft width				
$M_{(sunnort)} = +w_{net}L^2/8 =$	32919.35294	in-lb/ft width				
(-apport) int 7 0						
Stresses: f = P./A + M/S						
Midsnan: f =	435 4411765	+	41 98897059			
f =	393.4522059	or	477.4301471	nsi	< 1800 psi	ОК
Center Support: f =	435.4411765	±	83.97794118			
f =	351.4632353	or	519.4191176	psi	< 1800 psi	ОК
End Support: f =	435.4411765	psi	< 1800 psi	ОК		
Stresses After Losses:						
w _{net} =	582	psf	downward			
$M_{(midspan)} = -w_{net}L^2/16 =$	192496.5	in-lb/ft width				
$M_{(current)} = +W_{out}L^2/8 =$	-384993	in-lb/ft width				
(apport) int r -						
Stresses: f = P./A + M/S						
Midspan: f =	370 125	+	491 0625			
f =	-120.9375	or	861, 1875	nsi	< 1800 psi	ОК
· · · ·						
Center Support: f =	370.125	±	982.125			
f =	-612	or	1352.25	psi	< 1800 psi	ОК
End Support: f =	370.125	psi	< 1800 psi	ОК		
Prestressing Tendons						
$A_p = P_i / f_{p_i} =$	0.418023529	in²/ft width				
Trv:	18	196" wire	A. =	0.54	in ²	
,.	Spacing =	15.50151976	in spacing			
Ultimate Load in Flexure	d_=	12	in			
At midspan and middle sunnort	ρ _c = A _c /h*d =	0.00375				
Unbonded tendons, span/depth	> 35					
f= P /Δ =	115150	psi	or fm = .6*f =	150000	psi	
f =f ±10000 +f /200-	162555 5750	nei	<f< td=""><td>100000</td><td>n ri</td><td></td></f<>	100000	n ri	
Max Reinf :	103333.3556	P.0	pe + 30000 =	100000	100	
WIGA, REIIII	0.200					
w _p ≤ .3b*β ₁ =	0.306					
$w_p = \rho_p *(t_{ps}/f_c) =$	0.153333333					
		1-				
$a = A_p * t_{ps} / .85 * f'_c * b =$	2.164705882	IN				
		1 - 11- <i>1</i> 4				
$M_n = A_p T_{ps} (d_p - a/2) =$	964246.5882	in-ID/ft	φ=	0.9		
φM _n =	867821.9294	in-lb/ft				
Plastic Hinge Analysis						
Load to cause P.H. @ support:						
w = 8M ₀ /L ² =	1311.90012	psf				
Load to cause P.H. @ midspan:						
w=12M_/L ² =	1967.85018	psf				
Factored Applied Load:						
w _u =	978.4	psf				
$M_u = w_u L^2 / 8 =$	53934.3	in-lb				
Shear Capacity	φ,=	0.75				
φV _c = φ2*f', ^{1/2} *h*d_ =	13661.03949	lb/ft width				
V., = 5/8*w*L =	12841.5	lb/ft width				
u u -						

Final Report Advisor: Dr. Boothby Jonathan Coan Band-Beam Spreadsheets

Typical Floor

Bay AB							
Snan:	27 58333333	ft					
							_
Dimensions (Assumed)							
b =	72	in					
	14	in					_
d=	11.5	in					
Loads							
Dead	Superimposed:	567	plf				
	Slab self-wt:	1312.5	plf				
	Beam self-wt:	1050	plf				
Live	:						
	Typ. Live Load:	1260	plf				
W., =	= 1.2D+1.6L =	5.5314	klf				
Assume: fixed ends							
M. =	350 709326	kin-ft					
	5501705520	mp n					-
Beam Design							
Assume: bonded tendons							
Gr 250 STL							
	250000	nsi	f. /f. =	0.86	> 85	v. =	04
	230000	P31	'py/'pu =	0.00	05	Y p —	0.4
	215000	psi					
f _{pc} =	150000	psi					
f'c=	4000	psi					
Try: 3/8" diameter strands	at 12" O.C.						
d _n =	0.375	in					
n=	12	strands					
Δ -	5 76	in ²					
	5.70						-
	0.0000505233						
ρ _p =	0.006956522						
f _{ps} =	f _{pu} [1-(γ _p /β ₁)*($\rho_p * f_{pu} / f'_c)] =$	198849.1049	psi	<f<sub>py, OK</f<sub>		
a =	4.678802467	in	C =	5.504473491	in		
Mn =	$A_{p}*f_{ps}*(d_{p}-a/2)=$	874.356895	kip-ft				
ε,=	0.003267629		φ=	0.9			
φW- =	786.9212055	kip-ft	> M., OK				
φ		- · ·					
٨		2 446711625	in ²	< A OV			
A _{s min}		2.440/11035		× Α _p , UK			
Deflections							
Denections	. 7 175	in					-
y =	/.125	111 10 ⁴					
I _{ut} =	17031						
f,=	474.341649	psi					
M _{cr} =	112.2852821	kip-ft					
Wp., =	4189.5	plf					
	265 628262	kin-ft					
	205.020302	p 10					
I _g =	16464						
ρ _g =	0.005714286						
k =	0.229810743						
kd =	2.642823545	in					
l,, =	3154.229562	in ⁴					
	4159 575982	in ⁴					
'e -	.135.575502						
		(Fixed or	d heares)				
K =	0.000042252	in (Fixed-ef	iu Dearrisj				
Δ _i =	0.000842352	111 1.a					
I/360 =	0.919444444	In					

Typical Floor (Edge Beam)

Bay AB (Edge Beam)							
Span:	27.58333333	ft					
Dimensions (Assumed)							
b =	36	in					
h =	14	in					
d=	11.5	in					
Loads							
Dead:	Superimposed:	305,4375	plf				
	Slab self-wt:	1312.5	plf				
	Beam self-wt:	525	plf				
Live:							
	Typ. Live Load:	678.75	plf				
w =	1 2D+1 6L =	3 657525	klf				
Assume: fixed ends	1.20 . 1.02 -	3.037323	KII				_
Assume. fixed ends	221 2002614	kin ft					_
IVI _u =	231.8993614	кір-п					
Beam Design							
Assume: bonded tendons							
Gr 250 STL							
f _{pu} =	250000	psi	f _{py} /f _{pu} =	0.86	>.85	γ _p =	0.4
f _{pv} =	215000	psi					
f _{ee} =	150000	psi					
	4000	nsi					
Tru 2/0" diamatan atau atau	4000	psi					_
Try: 3/8" diameter strands	at 24" O.C.						_
d _p =	0.375	in					
n =	12	strands					
A _p =	2.88	in²					
$\rho_p =$	0.006956522						
· · · · · ·							
f _{or} =	f _{ou} [1-(γ _o /β ₁)*(o_*f/f'_)] =	198849.1049	psi	< f.,, OK		
p	put tipiti t	p par cra			py,		
a =	4 678802467	in	c =	5 504473491	in		
-							
Mn =	A.*f*(da/2)=	437 1784475	kin-ft				
	, tp 1ps (0p 0/2)	10712701170	mp n				_
c -	0 002267620		ф-	0.0			_
	0.003207025		φ-	0.5			
							_
φivi _n =	393.4606028	кір-ті	> IVI _u , UK				
			. 2				
A _{s min} =	.004*A _{ct} =	1.223355817	IN ⁻	< A _p , OK			
Deflections							
ÿ =	7.125	in					
I _{ut} =	8515.5	in"					
f _r =	474.341649	psi					
M _{er} =	56,14264105	kip-ft					
	2821 6875	nlf					_
w _{D+L} -	2021.0873	pii u. e					_
M _a =	178.9044584	kip-ft					
I _g =	8232	in⁴					
$\rho_{\rho} =$	0.005714286						
k =	0.229810743						
kd =	2.642823545	in					_
1 -	1577 114791	in ⁴					_
	1702 2777	in ⁴					
l _e =	1/82.///51						
		(5:)	11				
k =	0.6	(Fixed-er	id beams)				
Δ _i =	0.001323708	IN					
I/360 =	0.919444444	in					

Cantilever

Cantilever							
Span:	9.666666667	ft					
Dimensions (Assumed)							
b =	72	in					
h =	14	in					
d=	11.5	in					
Loads							
Dead:	Superimposed:	1197	plf				
	Slab self-wt:	1312.5	plf				
	Beam self-wt:	1050	plf				
Live:							
	Typ. Live Load:	1260	plf				
w _u =	1.2D+1.6L =	6.2874	klf				
Assume: fixed ends							
M _u =	293.7613	kip-ft					
Beam Design							
Assume: bonded tendons							
Gr 250 STL							
f =	250000	psi	f _{ov} /f _{ou} =	0.86	>.85	γ _n =	0.4
	215000	nsi	ру, ра			• •	_
py =	215000	P 51					
T _{pc} =	150000	psi					
f'c=	4000	psi					
Try: 3/8" diameter strands	at 12" O.C.						
d _p =	0.375	in					
n =	12	strands					
A. =	5.76	in ²					
p							
	0.006056522						
	0.000930322						
	((4 / /0.)*/	*6 (61.)]	400040 4040				
T _{ps} =	$T_{pu} [1 - (\gamma_p / \beta_1)^* ($	$\rho_p T_{pu} (T_c) =$	198849.1049	psi	< r _{py} , OK		
a =	4.678802467	in	C =	5.504473491	in		
Mn =	$A_{p}*f_{ps}*(d_{p}-a/2)=$	874.356895	kip-ft				
ε,=	0.003267629		φ=	0.9			
φM. =	786.9212055	kip-ft	> M,,, OK				
		•					
۸ -	004*^ -	2 446711625	in ²	<a ok<="" td=""><td></td><td></td><td>_</td>			_
~s min -		2.440/11033		. n _p , or			
Deflections							
5-10000 S-	7 175	in					
y =	7.125	in ⁴					
I_ut =	1/031						
f _r =	474.341649	psi					
M _{cr} =	112.2852821	kip-ft					
W _{D41} =	4819.5	plf					
	225 17775	kin-ft					_
ivi _a –	223.1///3	p 10					
Ig =	16464	IN					
ρ _g =	0.005714286						
k =	0.229810743						
kd =	2.642823545	in					
I _{cr} =	3154.229562	in ⁴					
I. =	4804.528584	in ⁴					
le -	.004.020304						
۲-	21	(Cantilever)					
K -	0.000202742	in					
Δ _i =	0.000303713	111 1.a					
I/360 =	0.322222222	In					

Higher Load Areas

Higher Load Areas Typical F	loors						
Span:	27.58333333	ft					
Dimensions (Assumed)							
b =	72	in					
h =	14	in					
d=	11.5	in					
Loads							
Dead:	Superimposed:	987	plf				
	Slab self-wt:	1312.5	plf				
	Beam self-wt:	1050	plf				
Live:							
	Typ. Live Load:	3150	plf				
	71						
w =	1 2D+1 6L =	9 0594	klf				
Accumos fixed ands	1.2011.00 -	5.0554	KII				
Assume. fixed enus							
M _u =	5/4.39636//	kip-ft					
Beam Design							
Assume: bonded tendons							
Gr 250 STL							
f _{pu} =	250000	psi	$f_{py}/f_{pu} =$	0.86	>.85	$\gamma_p =$	0.4
f _{au} =	215000	psi					
f -	150000	nci					
I _{pc} =	130000	psi					
t'c=	4000	psi					
Try: 3/8" diameter strands	at 12" O.C.						
d _p =	0.375	in					
n =	12	strands					
A. =	5.76	in ²					
p							
	0.006056522						
μ _p =	0.000950522						
t _{ps} =	$f_{pu} [1-(\gamma_p/\beta_1)^*(\mu_p/\beta_1))^*(\mu_p/\beta_1))^*(\mu_p/\beta_1)^*(\mu_p/\beta_1)^*(\mu_p/\beta_1)^*(\mu_p/\beta_1)^*(\mu_p/\beta_1)^*(\mu_p/\beta_1))^*(\mu_p/\beta_1)^*(\mu_p/\beta_1)^*(\mu_p/\beta_1))^*(\mu_p/\beta_1)^*(\mu_p/\beta_1))^*(\mu_p/\beta_1)^*(\mu_p/\beta_1))^*(\mu_p/\beta_1)^*(\mu_p/\beta_1))^*(\mu_p/\beta_1))^*(\mu_p/\beta_1))^*(\mu_p/\beta_1))^*(\mu_p/\beta_1))^*(\mu_p/\beta_1))^*(\mu_p/\beta_1))^*(\mu_p/\beta_1))^*(\mu_p/\beta_1))^*(\mu_p/\beta_1))^*(\mu_p/\beta_1))^*(\mu_p/\beta_1))^*(\mu_p/\beta_1))^*(\mu_p/\beta_1))^*($	o _p *t _{pu} /t' _c)] =	198849.1049	psi	<f<sub>py, OK</f<sub>		
a =	4.678802467	in	C =	5.504473491	in		
Mn =	$A_{p}*f_{ps}*(d_{p}-a/2)=$	874.356895	kip-ft				
ε, =	0.003267629		φ=	0.9			
3							
фМ -	786 0212055	kin_ft	M OK				
ψινι _n –	780.9212033	кір-п	> IVI _U , OK				
			• 2				
A _{s min} =	.004*A _{ct} =	2.446/11635	In	< A _p , OK			
Deflections							
ÿ =	7.125	in					
I _{ut} =	17031	in"					
f _r =	474.341649	psi					
M =	112,2852821	kip-ft					
	C400 F	-14					
w _{D+L} =	0499.5	pii					
M _a =	412.0901155	kip-ft					
I _g =	16464	in⁴					
0 ₋ =	0.005714286						
rs k =	0.229810743						
kd =	2.642823545	in					_
	2154 220502	in ⁴					_
I _{cr} =	3134.229302	4					
I_e =	3423.483755	in'					
k =	0.6	(Fixed-er	id beams)				
$\Delta_i =$	0.001587787	in					
I/360 =	0.919444444	in					
						_	

Final Report Advisor: Dr. Boothby Jonathan Coan 17th Floor

17 th Floor							
Span:	27.58333333	ft					
Dimensions (Assumed)							
b =	72	in					
h =	14	in					
d=	11.5	in					
Loads	C	2007	.16				
Dead:	Superimposed:	2037	plf				
	Slab self-wt:	1312.5	pit				
livo	Bealli sell-wt.	1050	pii				
Live.	Typ Live Load:	3150	nlf				
	Typ. Live Load.	5150	pn				
	1 20+1 61 -	10 3104	klt				
Assume: fixed ands	1.2011.00	10.3134	KII				
Assume. Inteu enus	654 2045060	1.1. a. 64					
IVI _u =	654.2845969	кір-п					
Beam Design							
Assume: honded tendons							
Gr 250 STL							
f -	250000	nsi	f. /f. =	0.86	> 85	v. =	04
i pu –	230000	poi	· py/ · pu —	0.00	05	rp –	0.4
r _{py} =	215000	psi					
t _{pc} =	150000	psi					
f'_=	4000	psi					
Try: 3/8" diameter strands	at 12" O.C.						
d _p =	0.375	in					
n =	12	strands					
A _p =	5.76	in ²					
ρ _p =	0.006956522						
f _{ns} =	$f_{nu} [1 - (\gamma_n / \beta_1)^* ($	p_*f_u/f'_)] =	198849.1049	psi	< f _{nv} , OK		
F		P PC			P7:		
a =	4.678802467	in	c =	5.504473491	in		
Mn =	$A_{p}*f_{ps}*(d_{p}-a/2)=$	874.356895	kip-ft				
ε,=	0.003267629		φ=	0.9			
φM ₂ =	786.9212055	kip-ft	> M.,, OK				
			ur -				
Δ =	.004*A =	2.446711635	in ²	< A., OK			
C's min				p, on			
Deflections							
<u>v</u> =	7.125	in					
, , , , , , , , , , , , , , , , , , ,	17031	in ⁴					
	474 241640	nci					
1 _r -	474.341049	µ51					
IVI _{cr} =	112.2852821	кір-п					
W _{D+L} =	7549.5	plf					
M _a =	478.6636398	kip-ft					
I _g =	16464	in ⁴					
ρ _g =	0.005714286						
k =	0.229810743						
kd =	2.642823545	in					
_{cr} =	3154.229562	in ⁴					
I =	3326 039291	in ⁴					
le -	5520.055251						
k =	0.6	(Fixed-en	d beams)				
Λ. =	0.001898378	in	,				
<u>م</u> i – ا \/كدب –	0.919//////	in					
1/300 =	0.313444444		1				

Final Report Advisor: Dr. Boothby Jonathan Coan 18th Floor

18 th Floor							
Span:	27.58333333	ft					
Dimensions (Assumed)							
b:	= 72	in					
h	= 16	in					
d:	= 13.5	in					
Loads	C	22.47	16				
Dead	: Superimposed:	2247	pir				
	Slab self-wt:	1312.5	pir				
Livo	. Dealli sell-wi.	1200	pn				
Live	Typ Live Load:	8400	nlf				
	Typ. Live Loud.	0400	pii				
	1 2D+1 6L =	19 1514	klf				
Assume: fixed ends	1120 - 1102	15:151					
Assume. fixed ends	1214 262041	kin ft					
IVI _U -	- 1214.205041	кір-п					
Beam Design							
Assume: honded tendons							
Gr 250 STL							
f -	250000	nsi	f/f=	0.86	> 85	v. =	04
1 _{pu} .	- 215000	nci	·py/ ·pu =	0.80	05	rp —	0.4
T _{py} :	- 215000	h2i					
t _{pc} :	= 150000	psi					
f'_c:	= 4000	psi					
Try: 3/8" diameter strand	s at 6" O.C.						
d _p :	= 0.375	in					
n:	= 12	strands					
A _p :	= 11.52	in ²					
ρ	0.011851852						
f:	= f _{au} [1-(ν _a /β ₁)*(0.*f/f'.)] =	162854.0305	psi	< f OK		
	-put-trp/P1/t	P p · pu/· c/s		P	py en		
a	7.663719082	in	c =	9.016140097	in		
Mn	= A_*f_*(da/2)=	1511.515816	kip-ft				
	· · p · ps (• p • / = /						
	0 001491944		ф =	0.9			
C	0.001451544		Ψ-	0.5			
***	- 1360 264224	kin-ft	M OF				
φινι _n .	1300.304234	KIP-IL					
A	004**	2 011254652	in ²	< A . OV			
A _{s min} :	004*A _{ct} =	2.011351052		< Α _p , UK			
Deflections							
Denections	- 8 261004763	in					
y.		in ⁴					
lut =	- 20235.4285/						
f_r:	4/4.341649	psi					
M _{cr} :	= 231.2842938	kip-ft					
W _{D+L}	13159.5	plf					
M _a :	834.3564696	kip-ft					
ا _م :	= 24576	in ⁴					
<u>ه</u>	= 0.01						
μρ	0 291567917						
kd :	= 3,936166874	in					
	7785 82201	in ⁴					
	0140 457050	in ⁴					
l _e :	= 8143.457878						
		(5: 1					
k -	= 0.6	(Fixed-er	iu beams)				
Δ _i :	0.001351484	in					
I/360 :	0.919444444	in					

Final Report Advisor: Dr. Boothby Jonathan Coan Appendix B: Two-Way PT Flat Plate Slab Reinforcement Plans

Typical Floor

17th Floor

 18^{th} Floor

Final Report Advisor: Dr. Boothby Jonathan Coan Appendix C: Column Design Hand Calculations

Donathan Coan AE Senior Thisis Column Design Column A3 11th Floor, Original Column: 44×20, 10=1555 Kps, 16#9's PU = 2528 Kips (Assume: Pure Axial Load) Fe = 4000 ps; Fr= 60 ks: Using Design Aid R-4-60-26 (Sirreleant, acial load) Assure: ls= .02 offa = 2.32 ks: Assure: b= th BPn = 2.32 (12 h2) 2528=2.3212 => h= 4%.7.2 Try: 24×48 Colema As= .02Az = .02(24)(40) = 23.04 ... 2 Try: 16# 11's (Ast = 24.96, 2) Po= , 85 fe Ac + As fy =.85(4) (24(48) - 24.96) + 24.96 (60) = 5329 kips BPn = 5329(.65) = 3464 Kips > 2528KOK ACE 318-08 \$ 10.10.1 han = 24 > 12 = (13+12)(11) 12 = 13.933 2 014 Not Stade \$7.6.3. Clr Jistance between Jurs > 1.5 db = 1.5 (1.41) = 2.115 in min specify = 6.25 in > 2.115 in ok 11th Floor, Original Colomn: 36×24, Pv=1520 10.45, 16-#7's Pu= 2493 10.105 Destyn A.J R-4-60-0.6 Assume: Ps=.02 BPn = 2.32/cs; Assure: b= 3h $\beta I_n = 2.32 \left(\frac{2}{3}h^2\right)$ 2793=2,32(=)42 => h= 40.15 in Try: 21×42 $\begin{array}{l} & F_{1} = \frac{1}{2} \sum_{i=1}^{2} \left(28 \right) \left(42 \right) = 23.52 \text{ m}^{2} \\ & F_{2} = \frac{1}{2} \sum_{i=1}^{2} \left(-\frac{1}{2} \right) \left(45 + 24.96 \right) = 24.96 \text{ m}^{2} \\ & F_{0} = \frac{1}{2} \sum_{i=1}^{2} \left(28(42) - 24.96 \right) + 24.96 \text{ (60)} = 54.11 \text{ kins} \\ & \mathcal{B}_{P_{0}} = 54.11 \left(28(42) - 24.96 \right) + 24.96 \text{ (60)} = 54.11 \text{ kins} \\ & \mathcal{B}_{P_{0}} = 54.11 \left(28(42) - 24.96 \right) + 24.96 \text{ m}^{2} \text{ m}^{2}$ ACE 315-08 5 10.10.1. have = 28 > 12 = 13833 OK_ NOT Stander 57.10.2. 1.5 db = 2,115 in an symming = 7.5. h >2.115 de

Final Report Advisor: Dr. Boothby Jonathan Coan Appendix D: Column Investigations Band-Beam Spreadsheets

Typical Floor

Bay AB							
Snan:	52 58333333	ft					
	52.30333333						
Dimensions (Assumed)							
b =	72	in					
h =	14	in					
= //	11 5	in					
	11.0						
Loads							
Doad	Suparimposad	567	nlf				
Deau.	Slab colf wt:	1212 5	plf				
	Boom colf with	1050	plf				
Livo:	Beam sen-wt.	1050	pii				
LIVE.	Tup Live Load	1260	olf				
	Typ. Live Load.	1200	pn				
	4.30.4.61	5 534 4					
W _u =	1.2D+1.6L =	5.5314	KIT				
Assume: fixed ends							
M _u =	1274.529951	kip-ft					
Beam Design							
Assume: bonded tendons							
Gr 250 STL							
f=	250000	psi	f _{ov} /f _{ou} =	0.86	>.85	y., =	0.4
rpu –	235300	nci	pyv.hu	0.00		τp	
T _{py} =	215000	hai					
f _{pc} =	150000	psi					
f'c =	5950	psi					
Try: 3/8" diameter strands	at 6" O.C.						
d., =	0.375	in					
n =	12	strands					
A	11 52	in ²					
A _p =	11.52						
ρ _p =	0.013913043						
f _{os} =	$f_{pu} [1 - (\gamma_p / \beta_1)^* ($	ρ _p *f _{pu} /f' _c)] =	181225.6872	psi	< f _{pv} , OK		
a =	5.733289165	in	C =	6.745046077	in		
Mn =	△ *f *(d -a/2)=	1502 002338	kin-ft				
	np ips (up u/2)-	1502.002550	KIP IC				
	0.000444065						
ε _s =	0.002114865		φ=	0.9			
φM _n =	1351.802104	kip-ft	> M _u , OK				
A _{s min} =	.004*A _{ct} =	2.08942673	in²	< A _p , OK			
Deflections							
v =	7.243243243	in					
, _	17567 35125	in ⁴					
	1/30/.33133						
f _r =	5/8.5218233	psi					
M _{cr} =	178.1141713	kip-ft					
w _{D+L} =	4189.5	plf					
M. =	965, 3330495	kip-ft					
· · · ·	100000	in ⁴					
Ig =	16464						
ρ _g =	0.011428571						
k =	0.30805159						
kd =	3.542593283	in					
I _{cr} =	5443.726939	in ⁴					
I. =	5512.950869	in ⁴					
le –	222233555555						
- با	0.6	(Fixed-or	d heams)				
K =	0.0	in Neu-el	ia bearinsj				
Δ _i =	0.008393905						
I/360 =	1.752777778	in					

Higher Load Areas

Higher Load Areas Typical F	loors						
Span:	52.58333333	ft					
Dimensions (Assumed)							
b =	72	in					
h =	16	in					
d=	13.5	in					
Loads							
Dead:	Superimposed:	987	plf				
	Slab self-wt:	1312.5	plf				
	Beam self-wt:	1200	plf				
Live:			P				
	Typ Live Load:	3150	nlf				
	Typ: Live Loudi	5150	p				
	1 20 1 0	0 2204	1.14				
w _u =	1.2D+1.6L =	9.2394	KIT				
Assume: fixed ends							
M _u =	2128.917097	kip-ft					
Beam Design							
Assume: bonded tendons							
Gr 250 STL							
f =	250000	psi	f_/f_==	0.86	>.85	v., =	0.4
r	235300	nci	py, .bn	0.00		rp	
t _{py} =	215000	hai					
f _{pc} =	150000	psi					
f'c=	5950	psi					
Try: 1/2" diameter strands	at 6" O.C.						
d =	0 375	in					
up -	10	strands					
	10	stranus					
A _p =	31.104	in					
ρ _p =	0.032						
f =	f[1-(v./B.)*(o.*f/f'.)] =	91819.08057	psi	< f OK		
ps	-put-(1p/P1) (-p ·pu/ · c/ i		P	ру/ — П		
2-	7 942074256	in	c-	0 227029655	in		
d -	7.042974330		C-	9.227028033			
	A *C *(1 . (2)	2270 620704	1.1.0				
Mn =	$A_{p}^{t}_{ps}^{t}(d_{p}^{-a/2})=$	2279.638704	kip-ft				
ε _s =	0.001389279		φ=	0.9			
φM ₂ =	2051.674833	kip-ft	> M., OK				
			uy -				
A	004*4 -	1 050615747	in ²				
A _{s min} =	.004 A _{ct} =	1.950615747		< A _p , UK			
Deflections	0.05						
γ =	8.654185022	in					
I _{ut} =	28720.9163	in"					
f _r =	578.5218233	psi					
м –	324 0461001	kin-ft					
	524.0401051						
W _{D+L} =	6649.5	ріт					
M _a =	1532.159473	kip-ft					
$I_{\rho} =$	24576	in ⁴					
۰ –	0 077						
μPg =	0.40091.440						
K =	0.4298141b	in					
ка =	5.80249116	. 4					
I _{cr} =	15746.50288	in'					
I _e =	15830.03327	in ⁴					
k =	0.6	(Fixed-er	d beams)				
Λ. =	0.004639734	in					
L/260 -	1 75 7777770	in					
1/360 =	1./52/////8	lint					

Final Report Advisor: Dr. Boothby Jonathan Coan 17th Floor

17 th Floor							
Span:	52.58333333	ft					
Dimensions (Assumed)							
b =	72	in					
h =	18	in					
d=	15.5	in					
Loads							
Dead:	Superimposed:	2037	plf				
	Slab self-wt:	1312.5	plf				
	Beam self-wt:	1350	plf				
Live:							
	Typ. Live Load:	3150	plf				
w _u =	1.2D+1.6L =	10.6794	klf				
Assume: fixed ends							
M., =	2460.71793	kip-ft					
-							
Beam Design							
Assume: bonded tendons							
Gr 250 STL							
f =	250000	psi	f _{ov} /f _{ov} =	0.86	>.85	V., =	0.4
•pu	250000	poi	· py/ · pu	0.00		rp	0
I _{py} =	215000	psi					
t _{pc} =	150000	psi					
f' _c =	5950	psi					
Try: 1/2" diameter strands	at 6" O.C.						
d _p =	0.375	in					
n =	12	strands					
A. =	20.736	in ²					
р							
	0.019590645						
μ _p =	0.016560045						
t _{ps} =	$f_{pu} [1 - (\gamma_p / \beta_1)^* ($	p _p *t _{pu} /t' _c)] =	158153.0145	psi	<f<sub>py, OK</f<sub>		
a =	9.006044129	in	C =	10.59534603	in		
Mn =	$A_{p}*f_{ps}*(d_{p}-a/2)=$	3005.346605	kip-ft				
ε _s =	0.001388719		φ=	0.9			
φM ₂ =	2704.811944	kip-ft	> M., OK				
			ur -				
Δ -	004*4 -	2 1225/02/2	in ²				
~s min =	.004 A _{ct} -	2.132340342		< A _p , OK			
Deflections							
	0 /01/01/01	in					
y =	3.401401401	in ⁴					
I _{ut} =	39048						
f_r=	578.5218233	psi					
M _{cr} =	383.8211678	kip-ft					
w _{D+1} =	7849.5	plf					
M =	1808 660168	kin-ft					
	24002	in ⁴					
Ig =	34992						
ρ _g =	0.016						
k =	0.352571065						
kd =	5.464851501	in					
Ι _α =	16446.14917	in⁴					
Ι _ρ =	16623.38952	in ⁴					
k =	0.6	(Fixed-en	d beams)				
Λ. =	0.005215649	in					
<u>ا ا /عدم –</u>	1 752777779	in					
1/360 =	1.132/1/1/18						

Final Report Advisor: Dr. Boothby Jonathan Coan 18th Floor

18 th Floor							
Span:	52.58333333	ft					
Dimensions (Assumed)							
b =	72	in					
h =	24	in					
d=	21.5	in					
Loads							
Dead:	Superimposed:	2247	plf				
	Slab self-wt:	1312.5	plf				
	Beam self-wt:	1800	plf				
Live:							
	Typ. Live Load:	8400	plf				
w _u =	1.2D+1.6L =	19.8714	klf				
Assume: fixed ends							
M., =	4578.71325	kip-ft					
-							
Beam Design							
Assume: bonded tendons							
Gr 250 STL							
f=	250000	psi	f _{nv} /f _{nu} =	0.86	>.85	y., =	0.4
	215000	nci	· py · pu			rp	
г _{ру} –	213000	psi					
T _{pc} =	150000	psi					
f'c =	5950	psi					
Try: 1/2" diameter strands	at 6" O.C.						
d _p =	0.375	in					
n =	12	strands					
A. =	20.736	in ²					
ų							
0 -	0.0133053/0						
μ _p -	0.0133533345						
	C [4 / /0.)*/	*(((1))	400704 7044				
t _{ps} =	$f_{pu}[1-(\gamma_p/\beta_1)^*($	$p_p t_{pu}/t_c) =$	183784.7314	psi	<f<sub>py, OK</f<sub>		
a =	10.4656456	in	C =	12.31252424	in		
Mn =	$A_{p}*f_{ps}*(d_{p}-a/2)=$	5166.130393	kip-ft				
ε _s =	0.002238568		φ =	0.9			
φM _n =	4649.517353	kip-ft	> M _u , OK				
A =	.004*A=	3.365993019	in ²	< A., OK			
''s min	······································			· · p/ = · ·			
Deflections							
v =	12,53773585	in					
y -	91771 //717	in ⁴					
	51//1.4/1/						
t _r =	578.5218233	psi					
M _{cr} =	481.5595393	kip-ft					
w _{D+L} =	13759.5	plf					
M _a =	3170.426088	kip-ft					
	82944	in ⁴					
'g =	0.012						
ρ _g =	0.012						
k =	0.314243447						
kd =	6.756234101	IN . 4					
	34446.97485	in"					
I _e =	34616.92133	in ⁴					
k =	0.6	(Fixed-en	d beams)				
$\Delta_i =$	0.00439036	in					
I/360 =	1,752777778	in					
., 500 =							

Final Report Advisor: Dr. Boothby Jonathan Coan Two-Way PT Flat Plate Slab Reinforcement Plans

Typical Floor

 17^{th} Floor

18th Floor

Final Report Advisor: Dr. Boothby Jonathan Coan Appendix E: H.A.M. Toolbox Output

Final Report Advisor: Dr. Boothby Jonathan Coan Appendix F: Heat Transfer and Moisture Analysis Brick Cavity Wall

Heat Transfer				
Wall Materials	R-Value (from H.A.M. Toolbox)	U-Value (1/R)		
4" Brick	0.64	1.563		
3" Air Space	0.98	1.020		
3" Rigid Insulation	11.86	0.084		
Building Paper (8mil)	0.12	8.333		
Poly Film (6mil)	0.12	8.333		
8" Concrete Wall	1.16	0.862		
	14.00			
Total $II = 1/\Sigma P =$	14.00			
10101 U = 1/2 K =	0.0672			
)M/all area –	20	-m ²		
vvali area =	30	m		
Condition	Tomporatura (°C)			
Outdoor (Summar)				
Outdoor (Summer)	54 11			
Undoor (Summor)	-11			
Indoor (Summer)	24			
	21			
ΔI _{summer}	10			
ΔT_{winter}	-32			
Q = A*U*ΔT	Q (w/m²*K)			
Summer:	20.16			
Winter:	-63.84			
	$\Delta T_{layer} = \Delta T_{total} * R_{layer} / \Sigma R$			
Wall Materials	ΔT _{layer, summer} (°C)	T _{layer, summer} (°C)	ΔT _{layer, winter} (°C)	T _{layer, winter} (°C)
4 in Brick	0.430	33.46	-1.362	-9.194
3" Air Space	0.659	32.80	-2.086	-7.108
3" Rigid Insulation	7.970	24.83	-25.240	18.132
Building Paper (8mil)	0.081	24.75	-0.255	18.387
Poly Film (6mil)	0.081	24.67	-0.255	18.642
8" Concrete Wall	0.780	23.89	-2.469	21.111

Moisture Analysis	Winter							
Lavar	Matarial	Thickness (t) (mm)	Material Conductivity	Vapor Permeance (M)	Thermal Resistance (R)	AT (1/)	c	
Layer	IVIALETTAI		(K) (W/(m ² *K))	(ng/(s*Pa*m ²))	(m ² *K/W)	$\Delta I_i(K)$	ĸ _{vi}	ΔP _i (Pa)
Layer 1 (Exterior)	Brick	101.6	1.56	0.699	0.640	1.362	1.430	27.590
Layer 2	Air Space	76.2	1.02	40	0.980	2.086	0.025	0.482
Layer 3	Rigid Insulaion	76.2	0.08	1.29	11.860	25.240	0.773	14.914
Layer 4	Building Paper	0.254	8.33	43.5	0.120	0.255	0.023	0.444
Layer 5	Poly Film	0.254	8.33	0.059	0.120	0.255	16.827	324.650
Layer 6	Concrete Wall	203.2	0.86	0.524	1.160	2.469	1.907	36.792
		ΣM =	86.06	ΣR =	14.880	ΣR _{vi} =	20.985	
Winter Outside Air Temperature:	-10.6	°C =	262.4	к				
Inside Air Temperature:	21.1	°C =	294.1	К				
Outside RH:	80	%	P _{int} =	622.852				
Inside RH:	25	%	P _{ext} =	217.981				
Surface	Temperature (K)	Pressure (Pa)	RH (%)					
Outside	262.444	217.981	80.00					
1,2	263.806	245.570	80.93					
2,3	265.892	246.052	68.94					
3,4	291.132	260.966	12.60					
4,5	291.387	261.410	12.42					
5,6	291.642	586.060	27.41					
Inside	294.111	622.852	25.00					
P _{sat, ext} =	272.476							
P _{sat, 1,2} =	303.417							
P _{sat, 2,3} =	356.886							
P _{sat, 3,4} =	2070.441							
P _{sat, 4,5} =	2103.904							
P _{sat, 5,6} =	2137.841							
P _{sat, Int} =	2491.408							

	Summer							
laver	Matarial	Thickness (t) (mana)	Material Conductivity	Vapor Permeance	Thermal Resistance	AT (K)	P	
Layer	Materia	mickness (t) (mm)	(K) (W/(m ² *K))	(M) (ng/(s*Pa*m ²))	(R) (m ² *K/W)	Δ1 _i (K)	ĸ _{vi}	ΔΡ _i (Pa)
Layer 1 (Exterior)	Brick	101.6	1.56	0.699	0.640	-0.430	1.430	-103.858
Layer 2	Air Space	76.2	1.02	40	0.980	-0.659	0.025	-1.816
Layer 3	Rigid Insulaion	76.2	0.08	1.29	11.860	-7.970	0.773	-56.141
Layer 4	Building Paper	0.254	8.33	43.5	0.120	-0.081	0.023	-1.670
Layer 5	Poly Film	0.254	8.33	0.059	0.120	-0.081	16.827	-1222.105
Layer 6 (Interior)	Concrete Wall	203.2	0.86	0.524	1.160	-0.780	1.907	-138.501
		ΣM =	86.05503478	ΣR =	14.880	ΣR _{vi} =	20.985	
Summer Outside Air Temperature:	33.88888889	°C =	306.8888889	К				
Inside Air Temperature:	23.88888889	°C =	296.8888889	К				
Outside RH:	57	%	P _{int} =	1474.702				
Inside RH:	50	%	P _{ext} =	2998.793				
Surface	Temperature (K)	Pressure (Pa)	RH (%)]				
Outside	306.889	2998.793	57.00					
1,2	306.459	2894.936	56.36					
2,3	305.800	2893.120	58.44					
3,4	297.830	2836.979	90.92					
4,5	297.749	2835.308	91.30					
5,6	297.668	1613.203	52.20					
Inside	296.889	1474.702	50.00					
P _{sat, ext} =	5261.040							
P _{sat, 1,2} =	5136.264							
P _{sat, 2,3} =	4950.168							
P _{sat, 3,4} =	3120.361							
P _{sat, 4,5} =	3105.377							
P _{sat, 5,6} =	3090.455							
P _{sat, Int} =	2949.404							

Wall Materials	R-Value (from H.A.M. Toolbox)	U-Value (1/R)		
1-1/4" EIFS	4.25	0.235		
2" Air Space	0.98	1.020		
2-1/2" Rigid Insulation	12.84	0.078		
Building Paper (8mil)	0.12	8.333		
Poly Film (6mil)	0.12	8.333		
6" Concrete Block	0.92	1.087		
Total R = ΣR =	19.23			
Total U = 1/ΣR =	0.0520			
Wall area =	30	m²		
Condition	Temperature (°C)			
Outdoor (Summer)	34			
Outdoor (Winter)	-11			
Indoor (Summer)	24			
Indoor (Winter)	21			
ΔT _{summer}	10			
ΔT _{winter}	-32			
- winter				
Q = A*U*ΔT	Q (w/m ² *K)			
Summer:	15.60			
Winter:	-49.40			
	$\Delta T_{layer} = \Delta T_{total} * R_{layer} / \Sigma R$			
Wall Materials	ΔT _{layer, summer} (°C)	T _{layer, summer} (°C)	$\Delta T_{layer, winter}$ (°C)	T _{layer, winter} (°C)
4 in Brick	2.210	31.68	-6.999	-3.557
3" Air Space	0.510	31.17	-1.614	-1.943
3" Rigid Insulation	6.677	24.49	-21.144	19.201
Building Paper (8mil)	0.062	24.43	-0.198	19.399
Poly Film (6mil)	0.062	24.37	-0.198	19.596
8" Concrete Wall	0.478	23.89	-1.515	21.111

	Winter							
laver	Material	Thickness (t) (mm)	Material Conductivity	Vapor Permeance	Thermal Resistance	AT. (K)	R _{vi}	A.P. (Pa)
Layer	Iviacertai	mickness (c) (min)	(K) (W/(m ² *K))	(M) (ng/(s*Pa*m ²))	(R) (m ² *K/W)			Δri(ra)
Layer 1 (Exterior)	EIFS	31.75	0.24	1.99	4.250	6.999	0.502	10.265
Layer 2	Air Space	50.8	1.02	63	0.980	1.614	0.016	0.327
Layer 3	Rigid Insulaion	63.5	0.08	0.472	12.840	21.144	2.119	43.331
Layer 4	Building Paper	0.254	8.33	43.5	0.120	0.198	0.023	0.470
Layer 5	Poly Film	0.254	8.33	0.06	0.120	0.198	16.826	344.067
Layer 6	Concrete Block	152.4	1.09	3.2	0.920	1.515	0.313	6.410
		ΣM =	111.6916465	ΣR =	19.230	ΣR _{vi} =	19.799	
Winter Outside Air Temperature:	-10.55555556	°C =	262.4444444	К				
Inside Air Temperature:	21.11111111	°C =	294.1111111	К				
Outside RH:	80	%	P _{int} =	622.852				
Inside RH:	25	%	P _{ext} =	217.981				
Surface	Temperature (K)	Pressure (Pa)	RH (%)					
Outside	262.444	217.981	80.00					
1,2	269.443	228.246	48.83					
2,3	271.057	228.573	43.37					
3,4	292.201	271.904	12.28					
4,5	292.399	272.375	12.15					
5,6	292.596	616.442	27.17					
Inside	294.111	622.852	25.00					
P _{sat, ext} =	272.476							
P _{sat, 1,2} =	467.447							
P _{sat, 2,3} =	527.056							
P _{sat, 3,4} =	2213.723							
P _{sat, 4,5} =	2241.134							
P _{sat, 5,6} =	2268.841							
P _{sat, Int} =	2491.408							

	Summer							
lavor	Material Thickness	Thicknoss (+) (mm)	Material Conductivity	Vapor Permeance	Thermal Resistance	AT (V)	D	
Layer		mickness (t) (mm)	(K) (W/(m ² *K))	(M) (ng/(s*Pa*m ²))	(R) (m ² *K/W)	Δ1 _i (K)	n _{vi}	ΔP _i (Pa)
Layer 1 (Exterior)	Brick	101.6	0.24	0.699	4.250	-2.210	1.430	-103.858
Layer 2	Air Space	76.2	1.02	40	0.980	-0.510	0.025	-1.816
Layer 3	Rigid Insulaion	76.2	0.08	1.29	12.840	-6.677	0.773	-56.141
Layer 4	Building Paper	0.254	8.33	43.5	0.120	-0.062	0.023	-1.670
Layer 5	Poly Film	0.254	8.33	0.059	0.120	-0.062	16.827	-1222.105
Layer 6 (Interior)	Concrete Wall	203.2	1.09	0.524	0.920	-0.478	1.907	-138.501
		ΣM =	86.05503478	ΣR =	19.230	ΣR _{vi} =	20.985	
Summer Outside Air Temperature:	33.88888889	°C =	306.8888889	К				
Inside Air Temperature:	23.88888889	°C =	296.8888889	к				
Outside RH:	57	%	P _{int} =	1474.702				
Inside RH:	50	%	P _{ext} =	2998.793				
Surface	Temperature (K)	Pressure (Pa)	RH (%)					
Outside	306.889	2998.793	57.00					
1,2	304.679	2894.936	62.30					
2,3	304.169	2893.120	64.09					
3,4	297.492	2836.979	92.77					
4,5	297.430	2835.308	93.06					
5,6	297.367	1613.203	53.15					
Inside	296.889	1474.702	50.00					
P _{sat, ext} =	5261.040							
P _{sat, 1,2} =	4646.734							
P _{sat, 2,3} =	4514.256							
P _{sat, 3,4} =	3058.044							
P _{sat, 4,5} =	3046.646							
P _{sat, 5,6} =	3035.285							
P _{sat, Int} =	2949.404							

Final Report Advisor: Dr. Boothby Jonathan Coan Appendix G: Enclosure Structural Considerations

AE Senior Thesis Enclosure Breadth Jonathan Structura / Contern for hordows Use: IGU w/laminated ext. lite monolithic into lite 229" (33") -51-3 " -(6311) Impact Criteron Exterior lite & 1000 probability of inner glass ply brackage from 25 steel ball impact at 39.6 m/s (130 4/5) Assume: - Octom lite is a sacrifical ply -LGU is Annealed (AN) stass, PVB interlayer Use: 3 mm out-ply (27) 5.5mm innerply (Wind Criteria (Using ASCE 7-05) Assume: - X = . 33 for center city exposure - Topstory controls for wind disign - Design wind velocity = 110 mph - Lategory IV => I=1.15 - K2 = K2e = KJ = 1.0 -6 = . 85, GLpi = ± .18, Lp = .8 (Assume hand had a - Ignere IGU lord share heaton from ASTON E1300 ASEE 7-05 $\begin{array}{c} \frac{1-65}{Comporents + Cleveling, h > 60+t} \\ p = 266p - Ei(66pi) \\ 2 = 35.6 pst \\ g = 2h \end{array}$ P=35.6(.85-X.8)+35.6(.18) P= 30.6 pst LR m = p = 30.6 pst 30.6 pst × 1 th kA ASTM E1300 Ext. Lite: Assure AN glass (Tuble 1) GTF=1.0 LR = NFL (GTF) => NFL = 1.46 KPA (Fig Al. 27) 5 mm LOV => NFL= 2.47 KPL > 1.46 Kth OK Int. Lite : Assume: AN glass (Fig A1.4) Hommonolithic => NFL=1.866Pz > 1.46 KPz olz (52") Wind Design: Externa Lite i Sman LOU HW Interior Lite: 4 mm Mana AN

FIG. A1.27 (upper chart) Nonfactored Load Chart for 5.0 mm (¾6 in.) Laminated Glass with Four Sides Simply Supported (lower chart) Deflection Chart for 5.0 mm (¾6 in.) Laminated Glass with Four Sides Simply Supported

33 Copyright by ASTM Int'l (all rights reserved); Fri Aug 4 13:13:40 EDT 2006 Reproduction authorized per License Agreement with Nancy J. Smith (Penn State University);

 FIG. A1.4 (upper chart)
 Nonfactored Load Chart for 4.0 mm (%2 in.) Glass with Four Sides Simply Supported

 (lower chart)
 Deflection Chart for 4.0 mm (%2 in.) Glass with Four Sides Simply Supported

AE Senior Thesis Jonathen Coan Enclosure prasti Blast Criteria 100 16 change at looft standoff distance ASTM F= 2248-03 (Taske 3): Py J= 3.48 16Pa AST ME 300 Ext. Lite: Assume AN glass (sure as mind) (T_k ULL) GTF = 1.0 NFL = Pid = 3.48 k/k (Fig. A1.30) 10mm LGU => NFL = 5 K/23.48 k/k ok (3/1) Try: MS slars GTF= 2.0 NFL= 1.74 KPa (Fig Al. 27) 5 man LGV=) NFL= 2.03 KPa > 1.74 KPa ok Int. Lite: (3/16") Try: FT glass GTF=4.0 NFL= . 87 KPL (Fig A1.3) 3mm FT Mono => NFL= 1.24 >.87 of Ext. Lite: 30 5 mm) 45 26U Int. Lite: 50 mm) FT Mono Deismit Contern: -glass - to - brane must meet exception laboratory testing is not required. - Max allowable interstory drill = 1.5% Story height = 13'-10"= 166 m Dp = 5tory Light (Dr. 2+ Cyrich) = 33 166 (2.47)=, 495 in Drith Capmerty = 166 (1015) = 2.49 in Acle > 1.25 Dp hp = slass height = 37.2 bpz glass with z 63.2 Assume: C,=Cz $D_{clar} = 2C_{1}\left(1 + \frac{h_{p}C_{2}}{V_{p}C_{1}}\right) = 2c\left(1 + \frac{h_{p}}{b_{p}}\right) \ge 1.25\left(.495\right)$ $= C \ge \frac{1.25\left(.495\right)}{2\left(1 + \frac{33}{62}\right)} \ge .203 \text{ m}$ Vie glass-to-frame Clearance of It (Brim) for prevention at glass-to-frame contact

FIG. A1.30 (upper chart) Nonfactored Load Chart for 10.0 mm (¾ in.) Laminated Glass with Four Sides Simply Supported (lower chart) Deflection Chart for 10.0 mm (¾ in.) Laminated Glass with Four Sides Simply Supported

36 Copyright by ASTM Int'l (all rights reserved); Fri Aug 4 13:13:40 EDT 2006 Reproduction authorized per License Agreement with Nancy J. Smith (Penn State University); 5

FIG. A1.27 (upper chart) Nonfactored Load Chart for 5.0 mm (¾6 in.) Laminated Glass with Four Sides Simply Supported Deflection Chart for 5.0 mm (¾6 in.) Laminated Glass with Four Sides Simply Supported

33 Copyright by ASTM Int'l (all rights reserved); Fri Aug 4 13:13:40 EDT 2006 Reproduction authorized per License Agreement with Nancy J. Smith (Penn State University); 6

A1.5.3 Enter the vertical axis of the chart at the point corresponding to the short dimension of the glass and project a horizontal line until it intersects the vertical line of A1.5.2. A1.5.4 Draw a line of constant aspect ratio from the point of zero length and width through the intersection point in A1.5.3.

A1.5.5 Determine the NFL by interpolating between the load contours along the diagonal line of constant aspect ratio drawn in A1.5.4.

Copyright by ASTM Int'l (all rights reserved); Fri Aug 4 13:13:40 EDT 2006 Reproduction authorized per License Agreement with Nancy J. Smith (Penn State University);

Bibliography

Abeles, Paul W., and B. K. Bardhan-Roy. "Prestressed Concrete Designer's Handbook."

Google Books. Web. 7 Apr. 2012. < http://books.google.com

/books?id=oLov31yFR-AC>.

- Allen, Edward, and Joseph Iano. "The Architect's Studio Companion: Rules of Thumb for Preliminary Design - Edward Allen, Joseph Iano." *Google Books*. 2007. Web. 06 Jan. 2012. http://books.google.com/books?id=7acEsulN4oUC.
- American Concrete Institute. Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary. Farmington Hills, MI, 2008. Print.
- American Society of Civil Engineers. *Minimum Design Loads for Buildings and Other Structures* (ASCE 7-05). Reston, VA, 2005. PDF.
- "New York City Building Code (2008)." INTERNATIONAL CODE COUNCIL. 2008. Web. 06 Jan. 2012. http://publicecodes.citation.com/st/ny/ci-nyc/b200v08/index.htm?bu=YC-P-2008-000006>.
- Pencille, Douglas. "EIFS Facts." *DSP Home Inspections*. Web. 7 Apr. 2012. http://dspinspections.com/eifs_facts.htm>.
Portland Cement Association. Economical Concrete Floor Systems. Skokie, IL, 2005. PDF.

Wight, James K., and James G. MacGregor. Reinforced Concrete Mechanics and Design. Upper

Saddle River, NJ: Pearson Prentice Hall, 2009. Print.